Skip to main content
Log in

Understanding fission fragment mass distributions in a shape-modified random neck rupture model

  • Published:
Pramana Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The variances of the fission fragment mass distributions for the symmetric case, over a wide range of the fissility of the compound nucleus have been investigated within the framework of random neck rupture model (RNRM) proposed by Brosa et al. The shape of the fissioning nucleus is generated excluding \(c_{\mathrm {rel}}\) (i.e. \(c_{\mathrm {rel}}=1\)) in the RNRM model, which results in more continuous shape of fissioning nucleus at boundaries connecting heads to neck in the scission shape. This shape-modified RNRM model has been used to analyse experimental data of mass variances for symmetric mass distributions of 27 systems in a wide region of fissility (0.7–0.95). The average total kinetic energies, \(\langle \mathrm {TKE}\rangle \)s, for these fissioning systems have been taken from Viola systematics. The neck radius is an important parameter of the RNRM model and this has been varied to fit the experimental mass variances data. The systematics of the resulting neck radii are studied as a function of fissility and nuclear potential through \(\gamma _0\), the surface energy coefficient. It is found that the neck radii that fit the experimentally observed variances of the mass distributions fall into two groups. Empirical formulae have been obtained for the neck radii for these two groups of fissioning systems. Usage of the empirical formulae for neck radii predict the mass variances reasonably well for five test systems and it is shown that these predictions of the neck radii are better than the predictions with the Rayleigh criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. W Q Shen et al, Phys. Rev. C 36, 115 (1987)

    Article  ADS  Google Scholar 

  2. R K Choudhury, A Saxena, A Chatterjee, D V Shetty and S S Kapoor, Phys. Rev. C 60, 054609 (1999)

    Article  ADS  Google Scholar 

  3. R Vandenbosch and J Huizenga. Nuclear fission (Academic Press, Inc., New York, 1973)

    Google Scholar 

  4. C Waggemans, The nuclear fission process (CRC, London, 1991)

    Google Scholar 

  5. A Rusanov, M Itkis and V Okolovich, Z. Phys. A 342, 299 (1997)

    Google Scholar 

  6. Y Sawant et al, Phys. Rev. C 70, 051602 (2004)

    Article  ADS  Google Scholar 

  7. N P Shaw et al, Phys. Rev. C 61, 044612 (2000)

    Article  ADS  Google Scholar 

  8. A C Berriman, D J Hinde, M Dasgupta, C R Morton, R D Butt and J O Newton, Nature (London) 413, 144 (2001)

    Article  ADS  Google Scholar 

  9. G G Chubarian and et al, in Proceedings of the 4th International Conference on Dynamical Aspects of Nuclear Fission (DANF’98) (World Scientific, Singapore, 2000), 293

  10. S V Zhdanov et al, Sov. J. Nucl. Phys. 55, 1766 (1992)

    Google Scholar 

  11. J R Nix and W J Swiatecki, Nucl. Phys. 71, 1 (1965)

    Article  Google Scholar 

  12. C Tsang and J Wilhelmy, Nucl. Phys. A 184, 417 (1972)

    Article  ADS  Google Scholar 

  13. B D Wilkins, E P Steinberg and R Chasman, Phys. Rev. C 14, 1832 (1976)

    Article  ADS  Google Scholar 

  14. U Brosa and S Grossmann, Phys. Lett. B 126, 425 (1983)

    Article  ADS  Google Scholar 

  15. U Brosa, S Grossmann and A Muller, Phys. Rep. 197, 167 (1990)

    Article  ADS  Google Scholar 

  16. U Brosa, Phys. Rev. C 32, 1438 (1985)

    Article  ADS  Google Scholar 

  17. K Ramachandran et al, EPJ Web Conf. 63, 02017 (2013)

    Article  Google Scholar 

  18. E Prasad et al, Phys. Rev. C 96, 034608 (2017)

    Article  ADS  Google Scholar 

  19. I M Itkis et al, Phys. Rev. C 83, 064613 (2011)

    Article  ADS  Google Scholar 

  20. E V Prokhorova et al, Nucl. Phys. A 802, 45 (2004)

    Article  ADS  Google Scholar 

  21. K Nishio et al, Phys. Rev. C 82, 044604 (2010)

    Article  ADS  Google Scholar 

  22. V E Viola, K Kwiatkowski and M Walker, Phys. Rev. C 31, 1550 (1985)

    Article  ADS  Google Scholar 

  23. A Saxena, A Chatterjee, R K Choudhury, S S Kapoor and D M Nadkarni, Phys. Rev. C 49, 932 (1994)

    Article  ADS  Google Scholar 

  24. J G Cuninghame et al, Proc. IAEA Symp. Physics and Chemistry of Fission (Jülich 1979) (IAEA, Vienna, 1980) Vol. I, p. 551

  25. F Plasil et al, Phys. Rev. 142, 696 (1966)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr B V John and Dr L M Pant for fruitful discussions regarding the Brosa model. One of the authors (YS) is thankful to Dr V Jha for his help in the final stages of the work. The authors are thankful to Dr Y M Yusuf and Dr A K Mohanty for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Sawant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawant, Y., Suryanarayana, S.V., Nayak, B.K. et al. Understanding fission fragment mass distributions in a shape-modified random neck rupture model. Pramana - J Phys 96, 188 (2022). https://doi.org/10.1007/s12043-022-02420-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02420-0

Keywords

PACS Nos

Navigation