Skip to main content

Advertisement

Log in

Total excitation energy distribution for neutron-induced fission of thorium isotopes

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The fission fragment total excitation energy, TXE(A), was calculated for neutron-induced fission of \(^{227-233}\)Th using three methods. The first method is the conventional method of calculating TXE by subtracting Q value from total kinetic energy value. The second method is usually used to calculate the number of neutrons emitted and the third method is a systematic method by applying the intrinsic energy within the statistical scission point model. Third method has been modified based on the results of the other two methods and the required parameters have been obtained from neutron-induced fission of \(^{232}\)Th to calculate TXE distribution for other thorium isotopes. This indicates that for all thorium isotopes, TXE values increase with increasing mass numbers of fission fragments, except for the fission fragments with mass number about 95–100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S T Lam, L L Yu, H W Fielding, W K Dawson and G C Neilen, Phys. Rev. C 28, 1212 (1983)

    Article  ADS  Google Scholar 

  2. J Trochon, H Abou Yehia, F Brisard and Y Pranal, Nucl. Phys. A 318, 63 (1979)

    Article  ADS  Google Scholar 

  3. W Holubarsch, E Pfeiffer and F Gbnnenwein, Nucl. Phys. A 171, 631 (1971)

    Article  ADS  Google Scholar 

  4. C Budtz-Jorgensen and H H Knitter, Nucl. Phys. A 490, 307 (1988); 491, 56 (1989)

  5. M Caamano and F Farget, Phys. Lett. B 770, 72 (2017)

    Article  ADS  Google Scholar 

  6. J P Unik, J E Gindler, L E Glendenin, K F Flynn, A Gorski and R K Sjoblom, Proc. Third Symp. on Physics and Chemistry of Fission (Rochester, 1973) Vol. 2 (IAEA, Vienna, 1974) p. 19

  7. M Asghar et al, Nucl. Phys. A 373, 225 (1982)

    Article  ADS  Google Scholar 

  8. C Manailescu, A Tudora, F-J Hambsch, C Morariu and S Oberstedt, Nucl. Phys. A 867(1), 12 (2011)

    Article  ADS  Google Scholar 

  9. H R Faust, The Eur. Phys. J. A: Hadrons and Nuclei 14, 459 (2002)

    Google Scholar 

  10. D G Madland and J Rayford Nix, Nucl. Sci. Eng. 81, 213 (1982)

    Article  Google Scholar 

  11. C Morariu, A Tudora, F J Hambsch, S Oberstedt and C Manailescu, J. Phys. G: Nucl. Part. Phys. 39, 055103 (2012)

    Article  ADS  Google Scholar 

  12. A Tudora, F J Hambsch, I Visan and G Giubega, Nucl. Phys. A 940, 242 (2015)

    Article  ADS  Google Scholar 

  13. A Tudora, Ann. Nucl. Energy 33, 1030 (2006)

    Article  Google Scholar 

  14. U Brosa et al, Phys. Rep. 197, 167 (1990)

    Article  ADS  Google Scholar 

  15. A Ruben, H Marten and D Seeliger, Z. Phys. A 338, 67 (1991)

  16. W Lang, H G Clerc, H Wohlfarth, H Schrader and K H Schmidt, Nucl. Phys. A 345, 34 (1980)

    Article  ADS  Google Scholar 

  17. H W Schmitt, J H Neiler and F J Walter, Phys. Rev. 141, 1146 (1966)

    Article  ADS  Google Scholar 

  18. J N Neiler, F J Walter and H W Schmitt, Phys. Rev. 149, 894 (1966)

    Article  ADS  Google Scholar 

  19. I Visan, G Giubega and A Tudora, Rom. Rep. Phys. 67, 483 (2015)

    Google Scholar 

  20. M Jamiati and P Mehdipour Kaldiani, Turk. J. Phys. 44, 364 (2020)

    Article  Google Scholar 

  21. N Carjan, F A Ivanyuk and V V Pashkevich, Phys. Procedia 31, 66 (2012)

    Article  ADS  Google Scholar 

  22. F A Ivanyuk, Phys. Scr. 89, 054012 (2014)

    Article  ADS  Google Scholar 

  23. P M Kadiani, Front. Phys. 9, 629978 (2021)

    Article  Google Scholar 

  24. P Mehdipour Kaldiani, Phys. Scr. 95, 075306 (2020)

  25. P Mehdipour Kaldiani, Chin. Phys. C 45, 024110 (2020)

  26. P Mehdipour Kaldiani, Phys. Atom. Nucl. 84, 11-17 (2021)

  27. P Mehdipour Kaldiani, Phys. Rev. C 102, 044612 (2020)

  28. N Sugarman and A Turkevich, Radiochemical studies: The fission product edited by C D Coryell and N Sugarman (McGraw-Hill, New York, 1951) Vol. 3, p. 1396

    Google Scholar 

  29. H Umezawa, S Baba and H Baba, Nucl. Phys. A 160, 65 (1971)

    Article  ADS  Google Scholar 

  30. M Pahlavani and P Mehdipour, Int. J. Mod. Phys. E 27, 1850018 (2018)

  31. J Frehaut, Neutron gamma competition in fast fission (INDC(NDS)–220) edited by H D Lemmel (International Atomic Energy Agency (IAEA), 1989)

  32. H Marten, A Ruben and D Seeliger, Fission energetics and prompt neutron emission, No. INDC (NDS)–220 (1989)

  33. A V Ignatyuk, G N Smirenkin and A S Tishin, Sov. J. Nucl. Phys. 21, 255 (1975)

    Google Scholar 

  34. F A Ivanyuk, C Ishizuka, M D Usang and S Chiba, Phys. Rev. C 97, 054331 (2018)

    Article  ADS  Google Scholar 

  35. J Terrell, in: Proc. Prompt Neutrons from Fission, IAEA Symposium on Physics and Chemistry of Fission (Salzburg. Vienna, 1965) Vol. II, p. 3

  36. C Karthika and M Balasubramaniam. Eur. Phys. J. A 55, 59 (2019)

    Article  ADS  Google Scholar 

  37. V Y Denisov, Phys. Rev. C 91, 024603 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. M Herman, EMPIRE-3.2 Malta-Modular system for Nuclear Reaction Calculations and Nuclear Data Evaluation, Report INDC (NDS)-0603, BNL-101378-2013 (2013) pp. 56–58

  39. A I Sergachev, V G Vorobeva, B D Kuzminov, V B Mikhailov and M Z Tarasko, Sov. J. Nucl . Phys. 7, 475 (1968); Yadernaya Fizika 7, 778 (1968)

  40. G Audi, A H Wapstra and C Thibault, Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  41. M Jamiaty, Phys. Atom. Nuclei 83, 803 (2020)

    Google Scholar 

  42. B D Wilkins, E P Steinberg and R R Chasman, Phys. Rev. C 14, 1832 (1976)

    Article  ADS  Google Scholar 

  43. K Nishio, Y Nakagome, H Yamamoto and I Kimura, Nucl. Phys. A 632, 540 (1998)

    Article  ADS  Google Scholar 

  44. A Tudora et al, Nucl. Phys. A 929, 260 (2014)

    Article  ADS  Google Scholar 

  45. K P Santhosh and A Cyriac, Comptes Rendus Phys. 20, 569 (2019)

    Article  ADS  Google Scholar 

  46. S Pomme, E Jacobs, M Piessens, D De Frenne, K Persyn, K Govaert and M-L Yoneama, Nucl. Phys. A 572, 237 (1994)

    Article  ADS  Google Scholar 

  47. K Nishio, M Nakashima, I Kimura and Y Nakagome, J. Nucl. Sci. Technol. 35, 631 (1998)

    Article  Google Scholar 

  48. A Göök, C Eckardt, J Enders, M Freudenberger, A Oberstedt and S Oberstedt, Phys. Rev. C 96, 044301 (2017)

    Article  ADS  Google Scholar 

  49. K-H Schmidt et al, Nucl. Phys. A 665, 221 (2000); K-H Schmidt et al, Nucl. Phys. A 693, 169 (2001)

  50. K P Santhosh and B Priyanka, Nucl. Phys. A 940, 21 (2015)

    Article  ADS  Google Scholar 

  51. C Li, J Tian and F Zhang, Phys. Lett. B 809, 135697 (2020)

    Article  Google Scholar 

  52. P Talou et al, The Euro. Phys. J. A 54, 9 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Mehdipour Kaldiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaldiani, P.M., Jamiati, M. Total excitation energy distribution for neutron-induced fission of thorium isotopes. Pramana - J Phys 96, 164 (2022). https://doi.org/10.1007/s12043-022-02417-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02417-9

Keywords

PACS Nos

Navigation