Skip to main content
Log in

Phase function method for Hulthén-distorted separable non-local potentials in all partial waves

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The scattering phase parameters for short-range local potentials can be evaluated by using the phase function method (PFM), regarded as an efficient approach for computing scattering phase shifts for quantum mechanial problems, without solving the Schrödinger equation. We adapt PFM to deal with the Hulthén-distorted separable non-local potentials and derive a closed form expression for the phase function with rigorous inclusion of electromagnetic effect. We demonstrate the usefulness of our constructed expression by calculating elastic scattering phase parameters for proton–deuteron (p–d) system which agree quite well with the previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. F Calogero, Variable phase approach to potential scattering (Academic Press, New York, 1967)

    MATH  Google Scholar 

  2. G C Sett, U Laha and B Talukdar, J. Phys. A: Math. Gen. 21, 3643 (1988)

    Article  ADS  Google Scholar 

  3. U Laha, N Haque, T K Nandi and G C Sett, Z. Phys. A: Atom. Nuclei 332, 305 (1989)

    ADS  Google Scholar 

  4. U Laha, A K Jana and T K Nandi, Pramana – J. Phys. 37, 387 (1991)

    Google Scholar 

  5. L Hulthén, Ark. Mat. Astron. Fys. B 29, 1 (1942)

    MathSciNet  Google Scholar 

  6. C S Jia, J Y Liu and P Q Wang, Phys. Lett. A 372, 4779 (2008)

    Article  ADS  Google Scholar 

  7. W C Qiang, W L Chen, K Li and H P Zhang, Int. J. Mod. Phys. A 24, 5523 (2009)

    Article  ADS  Google Scholar 

  8. W G Fang, C W Li, W H Ying and L Y Yuan, Chin. Phys. B 18, 3663 (2009)

    Article  ADS  Google Scholar 

  9. J Bhoi, A K Behera and U Laha, J. Math. Phys. 60, 083502 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  10. R L Greene and C Aldrich, Phys. Rev. A 14, 2363 (1976)

    Article  ADS  Google Scholar 

  11. B Khirali, A K Behera, J Bhoi and U Laha, Ann. Phys. 412, 168004 (2020)

    Article  Google Scholar 

  12. A K Behera, P Sahoo, B Khirali and U Laha, Pramana – J. Phys. 95, 100 (2021)

    Google Scholar 

  13. P Sarkar, B Khirali, U Laha and P Sahoo, Int. J. Mod. Phys. E 30, 2150066 (2021)

    Article  ADS  Google Scholar 

  14. P Sahoo, U Laha, B Khirali and A K Behera, Rep. Math. Phys. 88, 295 (2021)

    Article  MathSciNet  Google Scholar 

  15. L Crepinsek, C B Lang, H Oberhummer, W Plessas and H F K Zingl, Acta Phys. Austriaca 42, 139 (1975)

    Google Scholar 

  16. W Schweiger, W Plessas, L P Kok and H van Haeringen, Phys. Rev. C 27, 515 (1983)

    Article  ADS  Google Scholar 

  17. J Haidenbauer and W Plessas, Phys. Rev. C 30, 1822 (1984)

    Article  ADS  Google Scholar 

  18. R G Newton, Scattering theory of waves and particles, 2nd Edn (McGraw-Hill, New York, 1982)

    Book  MATH  Google Scholar 

  19. A Erdeyli, Higher transcendental functions (McGraw-Hill, New York, 1953) Vol. 1

  20. L J Slater, Generalized hypergeometric functions (Cambridge University Press, London, 1966)

    MATH  Google Scholar 

  21. I S Gradshteyn and I M Ryzhik, Tables of integrals, series and products (Academic Press, London, 2000)

    MATH  Google Scholar 

  22. A W Babister, Transcendental functions satisfying non-homogeneous linear differential equations (MacMillan, New York, 1967)

    MATH  Google Scholar 

  23. W N Bailey, Generalized hypergeometric series (Cambridge University Press, London, 1935 )

    MATH  Google Scholar 

  24. H van Haeringen, Phys. Rev. A 18, 56 (1978)

    Article  ADS  Google Scholar 

  25. U Laha, B J Roy and B Talukdar, J. Phys. A: Math. Gen. 22, 3597 (1989)

    Article  ADS  Google Scholar 

  26. U Laha and B Talukdar, Pramana – J. Phys. 36, 289 (1991)

    Google Scholar 

  27. U Laha, Phys. Rev. A 74, 012710 (2006)

    Article  ADS  Google Scholar 

  28. U Laha, Pramana – J. Phys. 72, 457 (2009)

  29. U Laha and J Bhoi, Few-Body Syst. 54, 1973 (2013)

    Article  ADS  Google Scholar 

  30. E Huttel, W Arnold, H Baumgart, H Berg and G Clausnitzer, Nucl. Phys. A 406, 443 (1983)

    Article  ADS  Google Scholar 

  31. S Ishikawa, Few-Body Syst. 32, 229 (2003)

    ADS  Google Scholar 

  32. P A Schmelzbach, W Grüebler, R E White, V König, R Risler and P Marmier, Nucl. Phys. A 197, 273 (1972)

    Article  ADS  Google Scholar 

  33. J Arvieux, Nucl. Phys. A 221, 253 (1974)

    Article  ADS  Google Scholar 

  34. C R Chen, G L Payne, J L Friar and B F Gibson, Phys. Rev. C 39, 1261 (1989)

    Article  ADS  Google Scholar 

  35. L D Knutson, L O Lamm and J E McAninch, Phys. Rev. Lett. 71, 3762 (1993)

    Article  ADS  Google Scholar 

  36. A Kievsky, S Rosati, W Tornow and M Viviani, Nucl. Phys. A 607, 402 (1996)

    Article  ADS  Google Scholar 

  37. S König and H W Hammer, Phys. Rev. C 83, 064001 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Laha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, B., Laha, U., Sahoo, P. et al. Phase function method for Hulthén-distorted separable non-local potentials in all partial waves. Pramana - J Phys 96, 162 (2022). https://doi.org/10.1007/s12043-022-02410-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02410-2

Keywords

PACS Nos

Navigation