Skip to main content
Log in

Signatures of nonlinear magnetoelectricity in the second harmonic spectra of SU(2) symmetry-broken quantum many-body systems

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Quantum mechanical perturbative expressions for second-order dynamical magnetoelectric (ME) susceptibilities have been derived and calculated for a small molecular system using the Hubbard Hamiltonian with SU(2) symmetry breaking in the form of spin–orbit coupling (SOC) or spin–phonon coupling. These susceptibilities will have signatures in second harmonic generation spectra. We show that SU(2) symmetry breaking is the key to generate these susceptibilities. We have calculated these ME coefficients using the full many-body basis and solved the Hamiltonian matrix for low-lying excited states using Lanczos method. Varying the Hubbard term along with SOC strength, we find spin and charge and both spin–charge dominated spectra of dynamical ME coefficients. We have shown that intensities of the peaks in the spectra are the highest when the magnitudes of Hubbard and SOC strengths are in a similar range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T Schneider, Nonlinear optics in telecommunications (Springer-Verlag Berlin Heidelberg, 2004)

    Book  Google Scholar 

  2. R Slusher, in: Summaries of Papers Presented at the Lasers and Electro-Optics (CLEO ’02). Technical Digest (2002), Vol. 1, p. 482

  3. A Yariv and P Yeh, Photonics: Optical electronics in modern communications (Oxford University Press, 2006)

  4. B Champagne, A Plaquet, J L Pozzo, V Rodriguez and F Castet, J. Am. Chem. Soc. 134(19), 8101 (2012)

    Article  Google Scholar 

  5. S C Abarahams, J. Appl. Crystallogr. 5, 143 (1972)

    Article  Google Scholar 

  6. N  Hay, E  Springate, K  J Mendham, T  Halfmann, J  P Marangos, M  Castillejo and R  de Nalda, in: Quantum Electronics and Laser Science Conference (QELS 2000). Technical Digest, Postconference Edition, TOPS Vol. 40 (IEEE Cat. No. 00CH37089, 2000) p. 169

  7. S  L Oliveira and S  C Rand, Phys. Rev. Lett. 98, 093901 (2007)

    Article  ADS  Google Scholar 

  8. S  C Rand, W  M Fisher and S  L Oliveira, J. Opt. Soc. Am. B 25, 1106 (2008)

    Article  ADS  Google Scholar 

  9. W  Fisher and S  Rand, J. Lumin. 129, 1407 (2009)

    Article  Google Scholar 

  10. M T Trinh, G Smail, K Makhal, D S Yang, J Kim and S C Rand, Nat. Commun. 11, 5296 (2020)

    Article  ADS  Google Scholar 

  11. G Smail, M T Trinh, K Makhal, D S Yang, J Kim and S C Rand, Conference on Lasers and Electro-Optics, OSA Technical Digest (Optica Publishing Group, 2020), paper SW4G.2

  12. M T Trinh, K Makhal, D S Yang, J Kim and S C Rand, Nonlinear Optics (NLO), OSA Technical Digest (Optica Publishing Group, 2019), paper NTu1B.6

  13. S  C Rand, J. Opt. Soc. Am. B 26, 120 (2009)

    Article  Google Scholar 

  14. C X Sheng, S Singh, A Gambetta, T Drori, M Tong, S Tretiak and Z V Vardeny, Nat. Sci. Rep. 3, 1 (2013)

    Google Scholar 

  15. K  McEwan, K  Lewis, G-Y Yang, L-L Chng, Y-W Lee, W-P Lau and K-S Lai, Adv. Func. Mater. 13, 863 (2003)

    Article  Google Scholar 

  16. M  Naka and S  Isihara, Nat. Sci. Rep. 6, 20781 (2016)

    Article  ADS  Google Scholar 

  17. Y Lin, J E Eldridge, J Schlueter, H H Wang and A M Kini, Phys. Rev. B 64, 024506 (2001)

    Article  ADS  Google Scholar 

  18. L  Landau, L  Pitaevskii and E  Lifshitz, Electrodynamics of continuous media (Elsevier, 1984)

  19. B  Orr and J  Ward, Mol. Phys. 20, 513 (1971)

    Article  ADS  Google Scholar 

  20. R  Boyd, Nonlinear optics, 3rd Edn (Academic Press, 2008)

  21. C  Lanczos, J. Res. Natl. Bur. Stand. B 45, 255 (1950)

  22. A  Datta and S  K Pati, J. Phys. Chem. A 108, 9527 (2004)

    Article  Google Scholar 

  23. A  Datta and S  K Pati, J. Chem. Phys. 118, 8420 (2003)

    Article  ADS  Google Scholar 

  24. J  Hemberger, T  Rudolf, H A Krug von Nidda, F  Mayr, A  Pimenov, V  Tsurkan and A  Loidl, Phys. Rev. Lett. 97, 087204 (2006)

    Article  ADS  Google Scholar 

  25. N  F Hinsche, A  S Ngankeu, K  Guilloy, S  K Mahatha, A  Grubišić Čabo, M  Bianchi, M  Dendzik, C  E Sanders, J  A Miwa, H  Bana, E  Travaglia, P  Lacovig, L  Bignardi, R  Larciprete, A  Baraldi, S  Lizzit, K  S Thygesen and P  Hofmann, Phys. Rev. B 96, 121402 (2017)

    Article  ADS  Google Scholar 

  26. A  Ahlawat, S  Satapathy, V  G Sathe, R  J Choudhary and P  K Gupta, Appl. Phys. Lett. 103, 252902 (2013)

    Article  ADS  Google Scholar 

  27. T  Holstein and H  Primakoff, Phys. Rev. 58, 1098 (1940)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

AL is grateful for the financial support from DST and CSIR of the Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhiroop Lahiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahiri, A., Pati, S.K. Signatures of nonlinear magnetoelectricity in the second harmonic spectra of SU(2) symmetry-broken quantum many-body systems. Pramana - J Phys 96, 155 (2022). https://doi.org/10.1007/s12043-022-02405-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02405-z

Keywords

PACS Nos

Navigation