Skip to main content
Log in

Effects of two-tone intensity modulation on signal distortion and noise in a semiconductor laser for radio-over-fibre applications

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper introduces modelling and simulation of signal distortions as well as intensity noise induced by two-tone direct intensity modulation of semiconductor lasers for use in radio-over-fibre (RoF) systems. The study develops a large-signal modulation of semiconductor laser simulations in the regime of high-frequency modulation by counting lasers with high modulation bandwidth. The temporal and spectral characteristics of the modulated laser output are investigated. The temporal characteristics include the fluctuations in the modulated signal waveforms, while the spectral characteristics include the frequency spectrum of the modulation response, second-order harmonic distortion (HD2) and second- and third-order intermodulation distortions, IMD2 and IMD3, respectively, as well as the relative intensity noise (RIN). The investigations are performed under three bias currents Ib of 2, 5 and 10 times the threshold value Ith over a wide range of modulation depth that covers regimes of small and large-signal modulation and at modulation frequencies as high as 8 and 25 GHz with a spacing of 10 MHz. The dynamic range of the linearity of the investigated laser is evaluated in terms of spurious-free dynamic range (SFDR). The results show that the nonlinear distortions increase as modulation depth increases. The highest distortion levels are observed when the modulation frequency approaches the laser relaxation frequency. The low-frequency RIN increases as the modulation depth and\(/\)or bias current increase and it has levels which are smaller when the modulation frequency is 8 GHz than when it is 25 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R Llorente, S Walker, I T Monroy, M Beltrán, M Morant, T Quinlan and J B Jensen, Proceedings of the 16th European Conference on Networks and Optical Communications (2011) pp. 16–19

  2. D Wake, International Topical Meeting on Microwave Photonics, Technical Digest (2002) pp. 21–24

  3. W I Way, M Krain and R S Wolff, Electron. Lett. 23, 400 (1987)

    Article  ADS  Google Scholar 

  4. V Sharma, A Singh and A K Sharma, Optik. 121, 1545 (2010)

    Article  ADS  Google Scholar 

  5. O Wada, OSA Technical Digest (Optica Publishing Group, 2007) Paper FM13

  6. H‏ Yang, Optical techniques for broadband in-building networks, Doctoral dissertation (Eindhoven University of Technology, Eindhoven, 2011)

  7. R Olshansky and V A Lanzisera, Electron. Lett. 23, 1196 (1987)

    Article  ADS  Google Scholar 

  8. R Olshansky, V A Lanzisera and P M Hill, J. Light. Technol. 7, 1329 (1989)

    Article  ADS  Google Scholar 

  9. G Qazi, A K Sharma and M Uddin, Optik. 125, 1629 (2014)

    Article  ADS  Google Scholar 

  10. K Y ‏ Lau and A Yariv, Appl. Phys. Lett. 45, 1034 (1984)

    Article  ADS  Google Scholar 

  11. S Odermatt, B Witzigmann and B Schmithüsen, Opt. Quantum Electron. 38, 1039 (2006)

    Article  Google Scholar 

  12. G Morthier and P Vankwikelberge, Handbook of distributed feedback laser diodes 2nd Edn (Artech House, London, 2013)

  13. S W Mahmoud, A Mahmoud and M Ahmed, Int. J. Numer. Model.: Electron. Netw. Devices Fields 29, 280 (2016)

    Article  Google Scholar 

  14. A Bakry and M Ahmed, Opt. Laser Technol. 50, 134 (2013)

    Article  ADS  Google Scholar 

  15. J A Chiddix, H Laor, D M Pangrac, L D Williamson and R W Wolfe, IEEE. J. Sel. Areas Commun. 8, 1229 (1990)

    Article  Google Scholar 

  16. A S Daryoush, Int. Top. Meet. Microw. Photonics (IEEE Lasers and Electro-optics Society, New Jersey, 1998)

  17. R E Schuh, D Wake and E Sundberg, International Topical Meeting on Microwave Photonics (Technical Digest, 2002) pp. 113–116

  18. Intermodulation Distortion Measurements Using the 37300 Series Vector Network Analyzer Application Note/GIP-G, Anritsu (2000) ‏

  19. A Mahmoud, M Ahmed and S W Mahmoud, PramanaJ. Phys. 90, 1 (2018)

    Article  MathSciNet  Google Scholar 

  20. P Westbergh, E Söderberg, J S Gustavsson, A Larsson, Z Zhang, J Berggren and M Hammar, IET Optoelectron. 2, 88 (2008)

    Article  Google Scholar 

  21. W I Way, IEICE Trans. Electron 76, 1091 (1993)

    Google Scholar 

  22. R E Schuh and D Wake, International Topical Meeting on Microwave Photonics (Technical Digest, 1999) pp. 17–19

  23. H T Lin and Y H Kao, J. Light. Technol. 14, 2567 (1996)

    Article  ADS  Google Scholar 

  24. A J Rainal, J. Light. Technol. 14, 474 (1996)

    Article  ADS  Google Scholar 

  25. A Leung, Performance analysis of SCM optical transmission link for fiber-to-the-home (University of Kansas, 2004)

  26. S Lai and J Conradi, J. Light. Technol. 15, 20 (1997)

    Article  ADS  Google Scholar 

  27. A Bakry and M Ahmed, Phys. Wave Phenom. 24, 64 (2016)

    Article  ADS  Google Scholar 

  28. H D Jung and S K Han, IEEE Photon. Technol. Lett. 14, 980 (2002)

    Article  Google Scholar 

  29. H Yamada, T Okuda, T Torikai and T Uji, IEEE Int. Semicond. Laser Conf. 1996, pp. 177–178

  30. M Ahmed and A El-Lafi, Opt. Laser Technol. Tech. 40, 809 (2008)

    Article  ADS  Google Scholar 

  31. M Ahmed, A Bakry and S W Z Mahmoud, J. Mod. Opt. 62, 712 (2015)

    Article  ADS  Google Scholar 

  32. J C Cartledge and R C Srinivasan, J. Light. Technol. 15, 852 (1997)

    Article  ADS  Google Scholar 

  33. M Ahmed, M Yamada and M Saito, IEEE J. Quantum Electron. 37, 1600 (2001)

    Article  ADS  Google Scholar 

  34. G P Agrawal, Fiber-optic communication systems, 2nd Edn (John Wiley, New York, 1997)

    Google Scholar 

  35. M Ahmed, Int. J. Numer. Model.: Electron. Netw. Devices Fields 17, 147 (2004)

    Article  Google Scholar 

  36. R Hui and M O'Sullivan, Fiber optic measurement techniques (Academic Press, 2009) Chap. 3

  37. K Sato, S Kuwahara and Y Miyamoto, J. Light. Technol. 23, 3790 (2005)

    Article  ADS  Google Scholar 

  38. K Petermann, Noise characteristics of solitary laser diodes, in: Laser diode modulation and noise (Kluwer Academic Publishers, Springer, 1988) pp. 152–213

  39. C Y Wu, Analysis of high-speed modulation of semiconductor lasers by electron heating, Doctoral dissertation (University of Toronto, 1995)

  40. E Hemery, L Chusseau and J M Lourtioz, IEEE J. Quantum Electron. 26, 633 (1990)

    Article  ADS  Google Scholar 

  41. M Tang and S Wang, Appl. Phys. Lett. 48, 900 (1986)

    Article  ADS  Google Scholar 

  42. K Y Park and C H Lee, IEEE J. Quantum Electron. 44, 995 (2008)

    Article  ADS  Google Scholar 

  43. I Joindot, J. Phys. III 2, 1591 (1992)

    Google Scholar 

  44. G Keiser, Fiber optic communications (Springer Nature,‏ 2021)

Download references

Acknowledgements

The authors thank Prof. Moustafa Ahmed, Department of Physics, Faculty of Science, King Abdulaziz University for help in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Salam, Y.A., Mohamed, T. & Mahmoud, A. Effects of two-tone intensity modulation on signal distortion and noise in a semiconductor laser for radio-over-fibre applications. Pramana - J Phys 96, 151 (2022). https://doi.org/10.1007/s12043-022-02389-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02389-w

Keywords

PACS Nos

Navigation