Skip to main content
Log in

Stabilisation of higher-order solitons by the compensation of quintic nonlinearity, fourth-order dispersion and intrapulse Raman scattering in optical fibres

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The propagation of a higher-order soliton in an ideal single-mode optical fibre under higher-order dispersion and higher-order nonlinearity is much affected by quintic nonlinearity, fourth-order dispersion and intrapulse Raman scattering. We use a compact split-step Padé scheme to numerically study the stabilisation of higher-order solitons by these effects in optical fibres. Our results show that the relative amplitudes of these two dispersive sideband waves, which originate from the fourth-order dispersion decrease or even eliminated by the increasing values of quintic nonlinear coefficient, in the presence of the intrapulse Raman scattering, and the higher-order soliton returns almost to its original shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G P Agrawal, Nonlinear fibre optics, 6th Edn (Academic Press, New York, 2019)

    Google Scholar 

  2. A Hasegawa and Y Kodama, Solitons in optical communications (Oxford University Press, Oxford, 1995)

    MATH  Google Scholar 

  3. A Hasegawa and M Matsumoto, Optical solitons in fibres (Springer, New York, 2002)

    Google Scholar 

  4. S Roy, S K Bhadra and G P Agrawal, Opt. Commun. 282, 3798 (2009)

    Article  ADS  Google Scholar 

  5. P K A Wai, C R Menyuk, Y C Lee and H H Chen, Opt. Lett. 11, 464 (1986)

    Article  ADS  Google Scholar 

  6. S Roy, S K Bhadra and G P Agrawal, Opt. Commun. 283, 3081 (2010)

    Article  ADS  Google Scholar 

  7. K Tai, A Hasegawa and N Bekki, Opt. Lett. 13, 392 (1982)

    Article  ADS  Google Scholar 

  8. N Akhmediev and M Karlsson, Phys. Rev. A 51, 2602 (1995)

    Article  ADS  Google Scholar 

  9. S Konar, M Mishra and S Jana, Physica D 195, 123 (2004)

    Article  MathSciNet  Google Scholar 

  10. J Xu, Y Zheng and X Sun, 16th International Conference on Optical Communications and Networks (ICOCN) (2017)

  11. A K Shafeeque Ali, K Porsezian and T Uthayakumar, Phys. Rev. E 90, 042910 (2014)

    Article  ADS  Google Scholar 

  12. A Hasegawa, Opt. Lett. 8, 650 (1983)

    Article  ADS  Google Scholar 

  13. M F Ferreira, Nonlinear effects in optical fibres (Wiley-Blackwell, New Jersey, 2011)

    Book  Google Scholar 

  14. M Smadi and D Bahloul, Comput. Phys. Commun. 182, 366 (2011)

    Article  ADS  Google Scholar 

  15. M Smadi and D Bahloul, J. Phys: Conf. Ser. 574, 012035 (2015)

    Article  Google Scholar 

  16. S Roy, D Ghosh, S K Bhadra and G P Agrawal, Phys.Rev. A 79, 023834 (2009)

    Article  ADS  Google Scholar 

  17. J P Gordan and L F Mollenauer, Solitons in optical fibres: Fundamentals and applications (Academic Press, Boston, 2006)

    Google Scholar 

  18. R H Stolen and W J Tomlinson, J. Opt. Soc. Am. B 9, 565 (1992)

    Article  ADS  Google Scholar 

  19. A K Shafeeque Ali, M Z Ullah and M Lakshmanan, Phys. Lett. A 384, 126744 (2020)

    Article  MathSciNet  Google Scholar 

  20. L J Hua, C Rogers, K W Chow and K S Chiang, Commun. Theor. Phys. 61, 735 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is in part a contribution to the Post Graduation of Physics and the Physics of Radiations and their Interaction with Matter laboratory (LPRIM), Department of Physics, Faculty of Matter Sciences, University of Batna 1, Hadj Lakhdar, Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa Smadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smadi, M. Stabilisation of higher-order solitons by the compensation of quintic nonlinearity, fourth-order dispersion and intrapulse Raman scattering in optical fibres. Pramana - J Phys 96, 134 (2022). https://doi.org/10.1007/s12043-022-02379-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02379-y

Keywords

PACS Nos

Navigation