Skip to main content
Log in

Steepening of waves in non-ideal radiative magnetogasdynamic flow with dust particles

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The singular surface theory is used for the planar and cylindrically symmetric flow of a dusty gas in radiative magnetogasdynamics to study the behaviour of different modes of wave propagation, and their culmination into a steepened form. We have considered one-dimensional steepening of waves. The transport equation for the jump discontinuity in the velocity gradient at the wave heads is determined and solved numerically. The effects of the van der Waals excluded volume of the medium, the mass concentration of solid particles, the ratio of densities, the ratio of specific heats, the radiation parameter and the magnetic field strength on the shock formation are analysed in detail. It is observed that the gradient of density, velocity, pressure and magnetic field are related to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T Y Thomas, Int. J. Eng. Sci4, 207 (1966)

    Article  Google Scholar 

  2. B D Coleman and M E Gurtin. J. Chem. Phys47, 597 (1967)

    Article  ADS  Google Scholar 

  3. R Shyam, L P Singh and V D Sharma, Acta Astronaut13, 95 (1986)

    Article  ADS  Google Scholar 

  4. M Chadha and J Jena, J. Comput. Appl. Math34, 729 (2015)

    Google Scholar 

  5. R Arora, Comput. Math. Appl56, 2686 (2008)

    Article  MathSciNet  Google Scholar 

  6. S Kuila and T R Sekhar, Int. J. Appl. Comput. Math3, 1809 (2017)

    Article  MathSciNet  Google Scholar 

  7. B Bira, T R Sekhar and G P Raja Sekhar, Comput. Math. Appl75, 3873 (2018)

    Article  MathSciNet  Google Scholar 

  8. A Chauhan, R Arora and M J Siddiqui, Symmetry 11, 458 (2019)

    Article  Google Scholar 

  9. G B Whitham, Linear and nonlinear waves (John Wiley & Sons, 2011)

  10. V D Sharma, Int. J. Eng. Sci24, 813 (1986)

    Article  Google Scholar 

  11. W J Lick, J. Fluid Mech18, 274 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  12. H R Long and W G Vincenti, Phys. Fluids 10, 1365 (1967)

    Article  ADS  Google Scholar 

  13. H Schmitt, ZAMM 48, T241 (1968)

    Google Scholar 

  14. V D Sharma, R Shyam and L P Singh, ZAMM 67, 87 (1987)

    Article  ADS  Google Scholar 

  15. L P Singh, A Kumar and R Shyam, Astrophys. Space Sci106, 81 (1984)

    Article  ADS  Google Scholar 

  16. S I Pai, Magnetogasdynamics and plasma dynamics (Springer Science & Business Media, 2012)

  17. A Y Bakier, Int. Commun. Heat Mass Transfer 28, 119 (2001)

    Article  Google Scholar 

  18. A Chauhan, Phys. Fluids 24, 017101 (2022)

    Article  ADS  Google Scholar 

  19. M Chadha and J Jena, Int. J. Non Linear Mech74, 18 (2015)

    Article  ADS  Google Scholar 

  20. S K Srivastava, R K Chaturvedi and L P Singh, Z. Naturforsch. A 76, 435 (2021)

    Article  ADS  Google Scholar 

  21. L L Tao, L Wei, B Liu, H Zhang and W S Duan, Pramana – J. Phys95, 1 (2021)

    Article  Google Scholar 

  22. P K Sahu, Phys. Fluids 29, 086102 (2017)

    Article  ADS  Google Scholar 

  23. K Sharma, R Arora, A Chauhan and A Tiwari, Z. Naturforsch. A 75, 193 (2020)

    Article  ADS  Google Scholar 

  24. J Yin, J Ding, and X Luo, Phys. Fluids 30, 013304 (2018)

    Article  ADS  Google Scholar 

  25. L P Singh, S D Ram and D B Singh, Acta Astronaut67, 296 (2010)

    Article  ADS  Google Scholar 

  26. J P Vishwakarma and N Patel, Meccanica 50, 1239 (2015)

    Article  MathSciNet  Google Scholar 

  27. S Shah, R Singh and J Jena, Appl. Math. Comput. 413, 126656 (2022)

    Google Scholar 

  28. S I Pai, Pure Appl. Phys. 3, 56 (1977)

  29. A Mentrelli, T Ruggeri, M Sugiyama and N Zhao, Wave Motion 45, 498 (2008)

  30. A Jeffrey, Appl Anal3, 79 (1973)

    Article  Google Scholar 

  31. G Boillatt and T Ruggeri, Proc. R. Soc. Edinburgh, Sect. A 83, 17 (1979)

    Article  ADS  Google Scholar 

  32. A Jeffrey, Quasilinear hyperbolic systems and waves (Pitman London, 1976)

  33. W Bleakney and A H Taub, Rev. Mod. Phys21, 584 (1949)

    Article  ADS  Google Scholar 

  34. V D Sharma, R Ram and P L Sachdev, J. Fluid Mech185, 153 (1987)

    Article  ADS  Google Scholar 

  35. K Sharma, A Chauhan and R Arora, Indian J. Phys95, 1813 (2020)

    Article  ADS  Google Scholar 

  36. J P Vishwakarma, G Nath and R K Srivastava, Ain Shams Eng. J9, 1717 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Astha Chauhan is thankful to the University Grants Commission, New Delhi, for financial support with grant number 2121440656, Ref. No. 21/12/2014(ii)EU-V. Kajal Sharma acknowledges the financial support awarded by the Department of Science and Technology, New Delhi under the scheme Inspire Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Arora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A., Tiwari, A., Sharma, K. et al. Steepening of waves in non-ideal radiative magnetogasdynamic flow with dust particles. Pramana - J Phys 96, 139 (2022). https://doi.org/10.1007/s12043-022-02376-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02376-1

Keywords

PACS Nos

Navigation