Skip to main content
Log in

The projected shell model study of the reduced electromagnetic transition probability ratio and back-bending for \(A=\) 150–158 isotopes of Sm nucleus

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The yrast band diagram and the reduced magnetic dipole-to-electric quadruple transitions ratio, B(M1)/B(E2),  are simulated using a Fortran code and constructed based on the projected shell model (PSM). Calculations using the PSM are applied to study the back-bending phenomena of neutron-rich even–even isotopes of Sm, namely \(^{150,152,154,156,158}\)Sm. The obtained B(M1) /B(E2) ratios show that around the band-crossing spin, their values are decreased. This phenomenon occurs due to a change in the structure of energy bands. Calculated results reproduce well the variation of moments of inertia as a function of rotational frequency in the presented back-bending figures for the isotopes under consideration. Finally, simulated results are compared with the available experimental data. Good agreement has been achieved from this comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. K Hara and Y Sun, Int. J. Mod. Phys. E 4, 637 (1995), https://doi.org/10.1142/S0218301395000250

    Article  ADS  Google Scholar 

  2. K Hara and Y Sun, Nucl. Phys. A 537, 77 (1992)

    Article  ADS  Google Scholar 

  3. K Hara and Y Sun, Nucl. Phys. A 529, 445 (1991), https://doi.org/10.1016/0375-9474(91)90580-Y

    Article  ADS  Google Scholar 

  4. R Devi, B D Sehgal, S K Khosa and J A Sheikh, Phys. Rev. C 72, 064-3041 (2005)

    Article  Google Scholar 

  5. S Iwasaki and K Hara, Prog. Theor. Phys. 68, 1782 (1982), https://doi.org/10.1143/PTP.68.1782

    Article  ADS  Google Scholar 

  6. A Johnson, H Ryde and J Sztarkier, Phys. Lett. B 34, 605 (1971), https://doi.org/10.1016/0370-2693(71)90150-X

    Article  ADS  Google Scholar 

  7. F S Stephens and R S Simon, Nucl. Phys. A 183, 257 (1972), https://doi.org/10.1016/0375-9474(72)90658-6

    Article  ADS  Google Scholar 

  8. J A Sheikh and K Hara, Phys. Rev. Lett. 82, 3968 (1999), https://doi.org/10.1103/PhysRevLett.82.3968

    Article  ADS  Google Scholar 

  9. R Wyss and S Pilotte, Phys. Rev. C 44, R602 (1991), https://doi.org/10.1103/PhysRevC.44.R602

    Article  ADS  Google Scholar 

  10. S Jehangir, G H Bhat, J A Sheikh, R Palit and P A Ganai, Nucl. Phys. A 968, 48 (2017), https://doi.org/10.1016/j.nuclphysa.2017.08.001

    Article  ADS  Google Scholar 

  11. Mohamed A Al-Ammeer and Mushtaq A Hussein, J. Babylon Univ./Pure Appl. Sci. 21(2), 1432 (2013)

  12. M Shahriarie, S Mohammadi and Z Firouzi, J. Kor. Phys. Soc. 76, 8 (2020), https://doi.org/10.3938/jkps.76.8

    Article  ADS  Google Scholar 

  13. T Bengtsson and I Ragnarsson, Nucl. Phys. A 436, 14 (1985), https://doi.org/10.1016/0375-9474(85)90541-X

    Article  ADS  Google Scholar 

  14. N Onishi and S Yoshida, Nucl. Phys. 80, 367 (1966), https://doi.org/10.1016/0029-5582(66)90096-4

    Article  Google Scholar 

  15. N Onishi, R K Sheline and S Yoshida, Phys. Rev. C 2, 1304 (1970), https://doi.org/10.1103/PhysRevC.2.1304

    Article  ADS  Google Scholar 

  16. Y Sun and K Hara, Comput. Phys. Commun. 104, 245 (1997), https://doi.org/10.1016/S0010-4655(97)00064-7

    Article  ADS  Google Scholar 

  17. P Mollera, A J Sierka, T Ichikawab and H Sagawa, At. Data Nucl. Data Tables 109, 1 (2015), https://doi.org/10.1016/j.adt.2015.10.002

    Article  ADS  Google Scholar 

  18. M Moonesi, A Haghpeima and M Shahriari, J. Kor. Phys. Soc. 78, 651 (2021), https://doi.org/10.1007/s40042-021-00127-w

    Article  ADS  Google Scholar 

  19. K Hara and S Iwasaki, Nucl. Phys. A 332, 61 (1979), https://doi.org/10.1016/0375-9474(79)90094-0

    Article  ADS  Google Scholar 

  20. J A Sheikh et al, Phys. Rev. C 77, 034313-1 (2008), https://doi.org/10.1103/PhysRevC.77.034313

    Article  ADS  Google Scholar 

  21. Y Sun, S X Wen and D H Feng, Phys. Rev. Lett. 72, 3483 (1994), https://doi.org/10.1103/PhysRevLett.72.3483

    Article  ADS  Google Scholar 

  22. R K Pandit, S Sharma, R Devi and S K Khosa, Eur. Phys. J. Plus 135, 830 (2020), https://doi.org/10.1140/epjp/s13360-020-00845-3

    Article  Google Scholar 

  23. N J Stone, At. Data Nucl. Data Tables 90, 75 (2005), https://doi.org/10.1016/j.adt.2005.04.001

    Article  ADS  Google Scholar 

  24. Y Sun and J L Egido, Nucl. Phys. A 580, 1 (1994), https://doi.org/10.1016/0375-9474(94)90811-7

    Article  ADS  Google Scholar 

  25. Y Sun and J Egido, Nucl. Phys. A 580, 1 (1994), https://doi.org/10.1016/0375-9474(94)90811-7 (2018)

    Article  ADS  Google Scholar 

  26. B Alex Brown, Lecture Notes in Nuclear Structure Physics, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan 2005, sec. 4.

  27. S Raman, C W Nestor Jr and P Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001), https://doi.org/10.1006/adnd.2001.0858

    Article  ADS  Google Scholar 

  28. B Pritychenko, M Birch, B Singh and M Horoi, At. Data Nucl. Data Tables 107, 1 (2016), https://doi.org/10.1016/j.adt.2015.10.001

    Article  ADS  Google Scholar 

  29. S J Asztalos et al, Phys. Rev. C 60, 044307-1-1 (1999), https://doi.org/10.1103/PhysRevC.60.044306

    Article  ADS  Google Scholar 

  30. H O Nafie, J H Madani and K A Gado, Int. J. Sci.: Basic Appl. Res. 13, 11 (2014)

    Google Scholar 

  31. R B Firestone, V S Shirley, S Y Frank chu, C M Baglin and J Zipkin, Table of isotopes 8th Edn (John Wiley and Sons, 1998)

  32. R Devi, B D Sehgal and S K Khosa, Pramana – J. Phys. 67, 467 (2006), https://doi.org/10.1007/s12043-006-0007-z

    Article  ADS  Google Scholar 

  33. R K Pandit, S Sharma, R Devi, S K Khosa, G H Bhat and J A Sheikh, Chin. Phys. C 43(12), 124108-1 (2019), https://doi.org/10.1088/1674-1137/43/12/124108

    Article  ADS  Google Scholar 

  34. A Bohr and B R Mottelson, Nuclear structure (World Scientific, Singapore\(/\)New Jersey\(/\)London\(/\)Hong Kong, 1998) Vol. 1, Sec. 3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M R Pahlavani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pahlavani, M.R., Teymoori, M. The projected shell model study of the reduced electromagnetic transition probability ratio and back-bending for \(A=\) 150–158 isotopes of Sm nucleus. Pramana - J Phys 96, 107 (2022). https://doi.org/10.1007/s12043-022-02353-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02353-8

Keywords

PACS Nos

Navigation