Skip to main content
Log in

Electromagnetic field and spherically symmetric dissipative fluid models

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper studies a few properties of Lemaître–Tolman–Bondi (LTB) space–time to the dissipative cases that may lead to its extension in Maxwell-f(RT) gravity, where R is the Ricci scalar and T is the trace of energy–momentum tensor. Using Misner and Sharp mass formalism, we have first established a relationship between the Weyl tensor and other physical variables. The role of electric charge in the development of the Bianchi identities was also investigated. The physical importance of the effective form of structure scalars was then analysed in view of some realistic backgrounds. We also discussed the generalisations of LTB and the extension of LTB based on structure scalars and a few symmetry properties under constant curvature conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Perlmutter et al, Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  2. A G Riess et al, Astrophys. J. 659, 98 (2007)

    Article  ADS  Google Scholar 

  3. E Komatsu et al, Astrophys. J. Suppl. Ser. 180, 330 (2009)

    Article  ADS  Google Scholar 

  4. S Nojiri and S D Odintsov, Phys. Lett. B 657, 238 (2007)

    Article  ADS  Google Scholar 

  5. S Capozziello and M De Laurentis, Phys. Rep. 509, 167 (2011)

    Article  Google Scholar 

  6. B P Abbott et al, Living Rev. Relativ. 23, 1 (2020)

    Article  ADS  Google Scholar 

  7. L P Singer et al, Astrophys. J. 795, 105 (2014)

    Article  ADS  Google Scholar 

  8. S Nojiri, S Odintsov and V Oikonomou, Phys. Rep. 692, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. S D Odintsov and D Sáez-Gómez, Phys. Lett. B 725, 437 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. A V Astashenok, S Capozziello and S D Odintsov, J. Cosmol. Astropart. Phys. 12, 040 (2013)

    Article  ADS  Google Scholar 

  11. A V Astashenok, S Capozziello and S D Odintsov, Phys. Rev. D 89 103509 (2014)

    Article  ADS  Google Scholar 

  12. T P Sotiriou and V Faraoni, Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  Google Scholar 

  13. E Cognola et al, Phys. Rev. D 77, 046009 (2008)

    Article  ADS  Google Scholar 

  14. S Capozziello and M De Laurentis, Ann. Phys. 524, 545 (2012)

    Article  Google Scholar 

  15. A Qadir, H W Lee and K Y Kim, Int. J. Mod. Phys. D 26, 1741001 (2017)

    Article  ADS  Google Scholar 

  16. T Harko, F S N Lobo, S Nojiri and S D Odintsov, Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  17. L Herrera and N O Santos, Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  18. C G Böhmer and T Harko, Class. Quant. Grav. 23, 6479 (2006)

    Article  ADS  Google Scholar 

  19. A Di Prisco, L Herrera, G Le Denmat, M A H MacCallum and N O Santos, Phys. Rev. D 76, 064017 (2007)

    Article  ADS  Google Scholar 

  20. B Mishra, P K Sahoo and S K Tripathy, Astrophys. Space Sci. 356, 163 (2015)

    Article  ADS  Google Scholar 

  21. M S Morris and K S Thorne, Am. J. Phys. 56, 395 (1988)

    Article  ADS  Google Scholar 

  22. C Cattoen, T Faber and M Visser, Class. Quant. Grav. 22, 4189 (2005)

    Article  ADS  Google Scholar 

  23. A DeBenedictis, D Horvat, S Ilijić, S Kloster and K S Viswanathan, Class. Quant. Grav. 23, 2303 (2006)

    Article  ADS  Google Scholar 

  24. L Herrera, G Le Denmat and N O Santos, Phys. Rev. D 79, 087505 (2009)

    Article  ADS  Google Scholar 

  25. Z Yousaf, M Y Khlopov, M Z Bhatti and H Asad, Mon. Not. R. Astron. Soc. 510, 4100 (2022), https://doi.org/10.1093/mnras/stab3546

    Article  ADS  Google Scholar 

  26. Z Yousaf, Eur. Phys. J. Plus 132, 71 (2017)

    Article  Google Scholar 

  27. R Ryblewski and W Florkowski, Eur. Phys. J. C 71, 1 (2011)

    Article  Google Scholar 

  28. L Herrera, G Le Denmat and N Santos, Class. Quant. Grav. 27, 135017 (2010)

    Article  ADS  Google Scholar 

  29. A Di Prisco, L Herrera, J Ospino, N O Santos and V M Viña-Cervantes, Int. J. Mod. Phys. D 20, 2351 (2011)

    Article  ADS  Google Scholar 

  30. Z Yousaf, Eur. Phys. J. Plus 136, 281 (2021)

    Article  Google Scholar 

  31. Z Yousaf, K Bamba, M Z Bhatti and U Farwa, Gen. Relativ. Gravit. 54, 7 (2022)

    Article  ADS  Google Scholar 

  32. J W Moffat, Phys. Rev. D 19, 3562 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  33. M H Dehghani, Phys. Rev. D 67, 064017 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  34. C G Tsagas, Class. Quant. Grav. 22, 393 (2004)

    Article  ADS  Google Scholar 

  35. L Herrera, A Di Prisco and J Ibanez, Phys. Rev. D 84, 107501 (2011)

    Article  ADS  Google Scholar 

  36. Z Yousaf, M Z Bhatti and K Hassan, Eur. Phys. J. Plus 135, 397 (2020)

    Article  Google Scholar 

  37. M Sharif, M Z Bhatti and A Ali, Eur. Phys. J. Plus 136, 1013 (2021)

    Article  Google Scholar 

  38. L Herrera and W Barreto, Phys. Rev. D 86, 064014 (2012)

    Article  ADS  Google Scholar 

  39. Z Yousaf, Phys. Dark Universe 28, 100509 (2020)

    Article  Google Scholar 

  40. Z Yousaf, M Z Bhatti and T Naseer, Eur. Phys. J. Plus 135, 323 (2020)

    Article  Google Scholar 

  41. P Rej and P Bhar, Astrophys. Space Sci. 366, 1 (2021)

    Article  Google Scholar 

  42. Z Yousaf, Phys. Scr. 97, 025301 (2022)

    Article  ADS  Google Scholar 

  43. Z Yousaf, Universe 8, 131 (2022)

    Article  ADS  Google Scholar 

  44. M Houndjo, Int. J. Mod. Phys. D 21, 1250003 (2012)

    Article  ADS  Google Scholar 

  45. M Z Bhatti, K Bamba, Z Yousaf and M Nawaz, J. Cosmol. Astropart. Phys. 09, 011 (2019)

    Article  ADS  Google Scholar 

  46. P H R S Moraes, W de Paula and R A C Correa, Int. J. Mod. Phys. D 28, 1950098 (2019)

    Article  ADS  Google Scholar 

  47. P K Sahoo, P H R S Moraes, P Sahoo and B K Bishi, Eur. Phys. J. C 78, 1 (2018)

    Article  Google Scholar 

  48. A Pradhan and R Jaiswal, Int. J. Geom. Methods Mod. Phys. 15, 1850076 (2018)

    Article  MathSciNet  Google Scholar 

  49. R S Kumar and B Satyannarayana, Indian J. Phys. 91, 1293 (2017)

    Article  ADS  Google Scholar 

  50. E Elizalde and M Khurshudyan, Phys. Rev. D 98, 123525 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  51. H Bondi, Mon. Not. R. Astron. Soc. 107, 410 (1947)

    Article  ADS  Google Scholar 

  52. N P Humphreys, R Maartens and D R Matravers, Gen. Relativ. Gravit. 44, 3197 (2012)

    Article  ADS  Google Scholar 

  53. B Leibundgut, Ann. Rev. Astron. Astron. 39, 67 (2001)

    Article  ADS  Google Scholar 

  54. F Mannucci, M Della Valle and N Panagia, Mon. Not. R. Astron. Soc. 370, 773 (2006)

    Article  ADS  Google Scholar 

  55. Z Yousaf, M Z Bhatti and A Rafaqat, Astron. Space Sci. 362, 68 (2017)

    Article  ADS  Google Scholar 

  56. P D Lasky and A W C Lun, Phys. Rev. D 74, 084013 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  57. M Z Bhatti, Z Yousaf and F Hussain, Eur. Phys. J. C 81, 853 (2021)

    Article  ADS  Google Scholar 

  58. L Herrera, A Di Prisco, J Ospino and J Carot, Phys. Rev. D 82, 024021 (2010)

    Article  ADS  Google Scholar 

  59. R A Sussman, Class. Quant. Grav. 15, 1759 (1998)

    Article  ADS  Google Scholar 

  60. J P Zibin, Phys. Rev. D 78, 043504 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  61. E M Duffy and B C Nolan, Class. Quant. Grav. 28, 105020 (2011)

    Article  ADS  Google Scholar 

  62. J T Firouzjaee and R Mansouri, EPL 97, 29002 (2012)

    Article  ADS  Google Scholar 

  63. R A Sussman, Class. Quant. Grav. 30, 065016 (2013)

    Article  ADS  Google Scholar 

  64. R A Sussman and J Larena, Class. Quant. Grav. 31, 075021 (2014)

    Article  ADS  Google Scholar 

  65. R A Sussman and L G Jaime, Class. Quant. Grav. 34, 245004 (2017)

    Article  ADS  Google Scholar 

  66. A Paliathanasis, Class. Quant. Grav. 37, 105008 (2020)

    Article  ADS  Google Scholar 

  67. L Herrera, A Di Prisco and J Ospino, Entropy 23, 1219 (2021)

    Article  ADS  Google Scholar 

  68. Z Yousaf, K Bamba, M Z Bhatti and U Ghafoor, Phys. Rev. D 100, 024062 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  69. C W Misner and D H Sharp, Phys. Rev. 136, B571 (1964)

    Article  ADS  Google Scholar 

  70. Z Yousaf, K Bamba and M Z Bhatti, Phys. Rev. D 93, 124048 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  71. L Herrera, J Ospino, A Di Prisco, E Fuenmayor and O Troconis, Phys. Rev. D 79, 064025 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by University of the Punjab Research Project for the fiscal year 2021–2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Yousaf.

Appendices

Appendix A

The parts of the equations are given below:

$$\begin{aligned} \chi _{00}=&\bigg [\mu f_{T}-\bigg (f-\frac{R}{2}f_{{R}}\bigg )+\frac{f''_{R}}{G^2}\nonumber \\&-\dot{f_{R}} \big (\frac{{\dot{G}}}{G} +2\frac{{\dot{M}}}{M}\bigg )-f'_{R}\bigg (\frac{G'}{G^3}-\frac{2M'}{G^2M}\big )\bigg ], \end{aligned}$$
(A.1)
$$\begin{aligned} \chi _{01}=&\left[ \dot{f'_{R}}-\frac{{\dot{G}}}{G}\bigg (\dot{f_{R}}+f'_{R}\bigg ) \right] ,\end{aligned}$$
(A.2)
$$\begin{aligned} \chi _{11}=&\left[ -\mu G^2 f_{T}+\bigg (f-\frac{R}{2} f_{R}\bigg ) G^2-G {\dot{G}} \dot{f_{R}}\right. \nonumber \\&\left. -\frac{G'}{G} f'_{R}+G^2 \ddot{f_{R}}+\dot{f_{R}} G^2 \bigg (\frac{{\dot{G}}}{G}+2\frac{{\dot{M}}}{M}\bigg )\right. \nonumber \\&\left. +f'_{R}G^2\bigg (\frac{G'}{G^3}-\frac{2M'}{G^2 M}\bigg ) \right] , \end{aligned}$$
(A.3)
$$\begin{aligned} \chi _{22}=&\left[ -\mu M^2 f_{T}+\bigg (f-\frac{R}{2} f_{R}\bigg ) M^2+\frac{M M'}{G^2}f'_{R}\right. \nonumber \\&\left. -M {\dot{M}} \dot{f_{R}}+M^2 \ddot{f_{R}}-\frac{M^2}{G^2}f''_{R}+M^2\bigg (\frac{{\dot{G}}}{G}\right. \nonumber \\&\left. +2\frac{{\dot{M}}}{M}\bigg ) \dot{f_{R}}+f'_{R}\bigg (\frac{G'}{G^3}-\frac{2M'}{G^2 M}\bigg )M^2\right] . \end{aligned}$$
(A.4)

Some more terms are given below:

(A.5)
(A.6)
(A.7)
(A.8)

Appendix B

The charge terms are given as follows:

$$\begin{aligned} Q^{00}&=\frac{1}{f_{r}}\frac{s^2}{8\pi M^4},\quad Q^{11}=-\frac{1}{f_{r}}\frac{s^2}{8\pi G^{2}M^4},\nonumber \\ Q^{22}&=\frac{1}{R^4}\frac{1}{f_{r}}\frac{s^2}{8\pi M^2}, \end{aligned}$$
(B.1)
$$\begin{aligned} Q^{33}&=\frac{1}{R^4\sin ^2\theta }\left[ \left( \frac{1+f_{T}}{f_{r}}\right) \frac{s^2}{8\pi M^2}-f_{T}\frac{s^2}{2M^4}M^2\right] ,~\nonumber \\ Q_{00}&=\left[ \left( \frac{1+f_{T}}{f_{r}}\right) \frac{s^2}{8\pi M^4}-f_{T}\frac{s^2}{2M^4}\right] ,\end{aligned}$$
(B.2)
$$\begin{aligned} Q_{11}&=-\left( \frac{1+f_{T}}{f_{r}}\right) \frac{s^2 G}{8\pi G M^4}+f_{T}G^2\frac{M^2}{2M^4},~\nonumber \\ Q_{22}&=\left[ \left( \frac{1+f_{T}}{f_{r}}\right) \frac{s^2}{8\pi M^2}-f_{T}\frac{s^2}{2M^4}M^2\right] ,\end{aligned}$$
(B.3)
$$\begin{aligned} Q_{33}&=\left[ \left( \frac{1+f_{T}}{f_{r}}\right) \frac{s^2}{8\pi M^2}\sin ^2\theta -f_{T}\frac{s^2}{2M^4}M^2\sin ^2\theta \right] ,\end{aligned}$$
(B.4)
$$\begin{aligned} Q_{4}&={Q'_{10}}+\left( \frac{Q_{2}}{G^{2}}\right) '+\frac{3{M'}}{M}Q_{10} +\frac{3{M'}}{MG^2}Q_{2}\nonumber \\&\quad -\left( \frac{Q_{0}}{2}\right) ',\nonumber \\ ~Q_{7}&=4\pi (Q_{\gamma \zeta } V^{\zeta }V^{\gamma }+Q_{\gamma \delta }V^{\gamma }V^{\delta }),\end{aligned}$$
(B.5)
$$\begin{aligned} Q_{8}&=\frac{1}{\chi _{\eta }\chi _{\zeta }-\frac{h_{\eta \zeta }}{3}} \Bigg (4\pi \Bigg (Q_{\eta \zeta } +Q_{\gamma \zeta }V_{\eta }V^{\gamma }\nonumber \\&\quad +Q_{\gamma \delta }\delta _{\eta \zeta } V^{\gamma }V^{\delta }\Bigg )-\frac{1}{3}h_{\eta \zeta }Q_{7}\Bigg ),\end{aligned}$$
(B.6)
$$\begin{aligned} Q_{9}&=-\pi \epsilon ^{\rho \epsilon \zeta }\Big (\epsilon _{\pi \rho \zeta }Q^{\pi }_{\epsilon } \nonumber \\&\quad +\epsilon _{\pi \epsilon \zeta }Q^{\pi }_{\rho }+\epsilon _{\rho \theta \zeta } Q^{\theta }_{\epsilon } +\epsilon _{\epsilon \theta \zeta }Q^{\theta }_{\rho }\Big ),\ \end{aligned}$$
(B.7)
$$\begin{aligned} Q_{10}&=\frac{1}{\chi _{\eta }\chi _{\zeta }-\frac{h_{\eta \zeta }}{3}} \left( -\pi \epsilon ^{\rho \epsilon }_{\eta }(\epsilon _{\pi \rho \zeta }Q^{\pi }_{\epsilon }\right. \nonumber \\&\quad \left. +\epsilon _{\pi \epsilon \zeta }Q^{\pi }_{\rho }+\epsilon _{\rho \theta \zeta } Q^{\theta }_{\epsilon } +\epsilon _{\epsilon \theta \zeta }Q^{\theta }_{\rho })-\frac{1}{3}Q_{9}h_{\eta \zeta } \right) , \end{aligned}$$
(B.8)
$$\begin{aligned} Q_{A}&=\left( {\frac{1}{f_{r}}\frac{s^2}{8\pi M^4}}\right) -G{\dot{G}}\left( \frac{1}{f_{r}}\frac{s^2}{8\pi G^{2}M^4}\right) \nonumber \\&\quad +\left( \frac{{\dot{G}}}{G} +\frac{2{\dot{M}}}{M}\right) \frac{1}{f_{r}}\frac{s^2}{8\pi M^4}, \end{aligned}$$
(B.9)
$$\begin{aligned} Q_{B}&=-\frac{1}{8\pi f_{R}}\bigg (\frac{s^2}{G^2M^4}\bigg )'\nonumber \\&\quad -\frac{1}{8\pi f_{R}}\left( 2\frac{{G}'}{G}+\frac{{M'}}{M}\right) \frac{s^2}{G^2M^4}\nonumber \\&\quad -2\frac{{M'}M}{G^2}\frac{1}{8\pi f_{R}}\frac{s^2}{M^6}, \end{aligned}$$
(B.10)
$$\begin{aligned} Q_{C}&=\frac{3{M'}Q_{2}}{G^2 M}+\left( \frac{Q_{2}}{2G^2}\right) '-\left( \frac{Q_{0}}{2}\right) ', \end{aligned}$$
(B.11)
$$\begin{aligned} Q_{D}&=\frac{1}{8\pi f_{R}}\bigg (\frac{s^2}{G^2M^4}\bigg )'-\frac{1}{8\pi f_{R}}\left( 2\frac{{G'}}{G}+\frac{{M'}}{M}\right) \frac{s^2}{G^2M^4}\nonumber \\&-2\frac{{M'}}{G^2}\frac{1}{8\pi f_{R}}\frac{s^2}{M^5}. \end{aligned}$$
(B.12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maqsood, F., Yousaf, Z. & Bhatti, M.Z. Electromagnetic field and spherically symmetric dissipative fluid models. Pramana - J Phys 96, 105 (2022). https://doi.org/10.1007/s12043-022-02352-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02352-9

Keywords

PACS Nos

Navigation