Skip to main content

Advertisement

Log in

A novel bioinspired quantum photocell based on GaN quantum dots

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The efficiency of classical photocells is restricted by Shockley–Queisser limit and radiative recombination is one of the key contributors in efficiency degradation. Recent experiments on photosynthetic apparatus of plants and bacteria have suggested that these systems can overcome this limitation by exploiting excitonic quantum coherence. In photosynthetic apparatus, solar photons create excitons in the pigment protein molecules. These excitons are then transferred to the reaction centre where charge separation takes place. These processes – excitonic generation and subsequent charge separation – are extremely efficient with almost unity efficiency and avoid efficiency degradation due to radiative recombination. Taking a cue from this biophysical process, we propose a GaN quantum dot-based quantum photocell that emulates the photosynthetic reaction centre. The proposed photocell uses delocalised excitons to exhibit efficiency larger than its classical counterpart. This further suggests that highly efficient quantum biological processes can give important pointers for developing energy harvesting quantum technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D O Hall and K K Rao, Photosynthesis (Cambridge University Press, 1999)

  2. H S Yoon, J D Hackett, C Ciniglia, G Pinto and D Bhattacharya, Mol. Biol. Evolut. 21(5), 809 (2004)

    Article  Google Scholar 

  3. R E Blankenship, M T Madigan and C E Bauer, Anoxygenic photosynthetic bacteria (Springer Science & Business Media, 2006) Vol. 2

  4. R E Blankenship, Molecular mechanisms of photosynthesis (John Wiley & Sons, 2013)

  5. J Strümpfer, M Sener and K Schulten, J. Phys. Chem. Lett. 5(3), 536 (2012)

    Article  Google Scholar 

  6. C Creatore, M A Parker, S Emmott and A W Chin, Phys. Rev. Lett. 111(25), 253601 (2013)

    Article  ADS  Google Scholar 

  7. M O Scully, K R Chapin, K E Dorfman, M B Kim and A Svidzinsky, Proc. Natl Acad. Sci. 108(37), 15097 (2011)

    Article  ADS  Google Scholar 

  8. J C Brookes, Proc. R. Soc. A: Math. Phys. Eng. Sci. 473(2201), 20160822 (2017)

    Article  ADS  Google Scholar 

  9. N Lambert, Y N Chen, Y C Cheng, C M Li, G Y Chen and F Nori, Nat. Phys. 9(1), 10 (2013)

    Article  Google Scholar 

  10. R J Cogdell, A Gall and J Köhler, Quart. Rev. Biophys. 39(3), 227 (2006)

    Article  Google Scholar 

  11. J Deisenhofer, O Epp, K Miki, R Huber and H Michel, Nature 318(6047), 618 (1985)

    Article  ADS  Google Scholar 

  12. E Romero, I HM van Stokkum, V I Novoderezhkin, J P Dekker and R van Grondelle, Biochemistry 49(20), 4300 (2010)

    Article  Google Scholar 

  13. K E Dorfman, D V Voronine, S Mukamel and M O Scully, Proc. Natl Acad. Sci. 110(8), 2746 (2013)

    Article  ADS  Google Scholar 

  14. G Yu and A J Heeger, J. Appl. Phys. 78(7), 4510 (1995).

    Article  ADS  Google Scholar 

  15. E Biolatti, R C Iotti, P Zanardi and F Rossi, Phys. Rev. Lett. 85(26), 5647 (2000)

    Article  ADS  Google Scholar 

  16. S De Rinaldis, I D’Amico, E Biolatti, R Rinaldi, R Cingolani and F Rossi, Phys. Rev. B 65(8), 081309 (2002)

    Article  ADS  Google Scholar 

  17. D Loss and D P DiVincenzo, Phys. Rev. A 57(1), 120 (1998)

    Article  ADS  Google Scholar 

  18. J R Petta, A C Johnson, J M Taylor, E A Laird, A Yacoby, M D Lukin, C M Marcus, M P Hanson and A C Gossard, Science 309(5744), 2180 (2005)

    Article  ADS  Google Scholar 

  19. A J Nozik, Physica E 14(1), 115 (2002)

    Article  ADS  Google Scholar 

  20. V Aroutiounian, S Petrosyan, A Khachatryan and K Touryan, J. Appl. Phys. 89(4), 2268 (2001)

    Article  ADS  Google Scholar 

  21. L D Contreras-Pulido, M Bruderer, S F Huelga and M B Plenio, New J. Phys. 16(11), 113061 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Swaroop Ganguly, IIT Bombay for insightful comments about this work. This work is supported by the Department of Science and Technology (DST), India with Grant No. DST/INSPIRE/04/2018/000023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishvendra Singh Poonia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poonia, V.S. A novel bioinspired quantum photocell based on GaN quantum dots. Pramana - J Phys 96, 102 (2022). https://doi.org/10.1007/s12043-022-02349-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02349-4

Keywords

PACS Nos

Navigation