Skip to main content
Log in

Influence of nonlinearity on the Berry phase and thermal entanglement in deformed Jaynes–Cummings model

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Deformed Jaynes–Cummings model (JCM) has a physical importance in quantum optics. Hence, we investigated the nonlinear JCM including the intensity-dependent coupling constant and the additional Kerr term. The cavity was assumed to be in thermal equilibrium with a heat reservoir at temperature T. Using the generators of a closed algebra which reduces to the su(1, 1) and Heisenberg–Weyl algebras at limiting cases, and considering the total excitation number as a constant of motion, the total Hilbert space decomposes into two subspaces. So the eigenvalues and the corresponding eigenvectors were obtained. We derived the thermal density matrix and analysed the fidelity and thermal entanglement using negativity measure. Furthermore, we studied the Berry phase of the nonlinear atom–field system and explored the influence of nonlinearity on the quantum phase transition (QPT) point and entanglement. It is found that the deformation parameter can strongly affect the fidelity, negativity and QPT point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A Einstein, B Podolsky and N Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. C H Bennett, G Brassard, C Crepeau, R Jozsa, A Peres and W K Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. C H Bennett and S J Wiesner, Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. C H Bennett, Phys. Today 48, 24 (1995)

    Article  Google Scholar 

  5. E T Jaynes and F W Cummings, Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  6. S J D Phoenix and P L Knight, Phys. Rev. A 44, 6023 (1991)

    Article  ADS  Google Scholar 

  7. C V Sukumar and B Buck, Phys. Lett. A 83, 211 (1981)

    Article  ADS  Google Scholar 

  8. G Berlin and J Aliaga, J. Mod. Opt. 48, 1819 (2001)

    Article  ADS  Google Scholar 

  9. F A A El-Orany, J. Phys. A Math. Gen. 38, 5557- (2005)

  10. D A Cardimona, V Kovanis, M P Sharma and A Gavrielides, Phys. Rev. A 43, 3710 (1991)

    Article  ADS  Google Scholar 

  11. E A Kochetov, Physica A 150, 280 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  12. D A Cardimona, M P Sharma and M A Ortega, J. Phys. B At. Mol. Opt. Phys. 22, 4029 (1989)

    Article  ADS  Google Scholar 

  13. C C Gerry, Phys. Rev. A 37, 2683 (1988)

    Article  ADS  Google Scholar 

  14. M Chaichian, D Ellinas and P Kulish, Phys. Rev. Lett. 65, 980 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  15. O Santos-Sanchez and J Recamier, J. Phys. B At. Mol. Opt. Phys. 45, 015502 (2012)

    Article  ADS  Google Scholar 

  16. A Dehghani, B Mojaveri, S Shirin and S Amiri Faseghandis, Sci. Rep. 6, 38069 (2016)

    Article  ADS  Google Scholar 

  17. P Gora and C Jedrzejek, Phys. Rev. A 45, 6816 (1992)

    Article  ADS  Google Scholar 

  18. A S F Obada, M M A Ahmed, F K Faramawy and E M Khalil, Chin. J. Phys. 42, 79 (2004)

    Google Scholar 

  19. S Sivakumar, Int. J. Theor. Phys. 43, 2405 (2004)

    Article  Google Scholar 

  20. S Sivakumar, J. Phys. A Math. Gen. 35, 6755 (2002)

  21. A B M Ahmed and S Sivakumar, Nonlinear Opt. Quantum Opt. 41, 219 (2010)

  22. M R Abbasi and M M Golshan, Physica A 392, 6161 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. M R Abbasi, Physica A 426, 1 (2015)

    Article  ADS  Google Scholar 

  24. M V Berry, Proc. R. Soc. London Ser. A: Math. Phys. Eng. Sci. 392, 45 (1984)

  25. A Ekert, M Ericsson, P Hayden, H Inamori, J A Jones, D K L Oi and V Vedral, J. Mod. Opt. 47, 2501 (2000)

    Article  ADS  Google Scholar 

  26. X B Wang and M Keiji, Phys. Rev. Lett. 87, 097901 (2001)

    Article  ADS  Google Scholar 

  27. S P Tewari, Phys. Rev. A 39, 6082 (1989)

  28. I F Guridi, A Carollo, S Bose and V Vedral, Phys. Rev. Lett.89, 220404 (2002)

  29. S P Bu, G F Zhang, J Liu and Z Y Chen, Phys. Scr. 78, 065008 (2008)

  30. M M He, G Chen and J Q Liang, Eur. Phys. J. D 44, 581 (2007)

  31. T Holstein and H Primakoff, Phys. Rev. 58, 1098 (1940)

    Article  ADS  Google Scholar 

  32. G C Gerry, J. Phys. A: Math. Gen. 16, L1 (1983)

    Article  ADS  Google Scholar 

  33. R Jozsa, J. Mod. Opt. 41, 2315 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  34. G Vidal and R F Werner, Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Mirzaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, S. Influence of nonlinearity on the Berry phase and thermal entanglement in deformed Jaynes–Cummings model. Pramana - J Phys 96, 87 (2022). https://doi.org/10.1007/s12043-022-02339-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02339-6

Keywords

PACS Nos.

Navigation