Skip to main content

Advertisement

Log in

Neutron spectrum reconstruction for liquid organic scintillators in low information scenarios via genetic algorithm

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Construction of neutron energy spectrum is of interest in various scientific fields such as nuclear power, nuclear security, industrial applications of nuclear and fundamental physics. A genetic neutron spectrum unfolding method is proposed to generate neutron energy spectrum giving light output data from a liquid organic scintillation detector. The method presented attempts to unfold given minimum a priori data, specifically it does not require an initial guess spectrum to be supplied. Two response matrices corresponding to an EJ-309 organic liquid scintillator are constructed for testing, with one matrix using the traditional discretisation and the other using an alternate discretisation based on the energy-to-light conversion process. Test cases include MCNPX-PoliMi simulated \(^{252}\)Cf, AmLi and AmBe spectra with corresponding detector responses. The genetic method can perform a coarse unfolding of the test spectra, potentially enough to perform an initial categorisation of the spectra. Promising results are obtained when genetic method is used in conjunction with the existing MAXED unfolding code, which operates on the maximum entropy principle. In this scenario, accuracy appears to exceed MAXED using its built-in default a priori spectrum. The \(^{252}\)Cf test case saw a reduction in the unfolded spectrum error from 5.08\(\times 10^{-3}\) to 9.42\(\times 10^{-5}\). The AmLi and AmBe test cases could not be unfolded by MAXED using its default spectrum; however, when supplied with the genetic method result, MAXED could complete a successful unfold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J Beaumont, T Lee, M Mayorov, C Tintori, F Rogo, B Angelucci and M Corbo, J. Radioanal. Nucl. Chem. 314, 803 (2017)

    Article  Google Scholar 

  2. R Johnson and B Wehring, FORIST unfolding code (ORNL/RSIC–40) (1976)

  3. W Burrus and J Drischler, The FERDOR unfolding code (ORNL-4154) (1965)

  4. J P\(\mathring{{\rm u}}\)pán and M Králík, Nucl. Instrum. Methods Phys. Res. A 325, 314 (1993)

  5. A Höcker and V Kartvelishvili, Nucl. Instrum. Methods Phys. Res. A 372, 469 (1996)

    Article  ADS  Google Scholar 

  6. D Stuenkel, J Holloway and G Knoll, Nucl. Sci. Eng. 132, 261 (1999)

    Article  Google Scholar 

  7. B Pehlivanovic, S Avdic, P Marinkovic, S Pozzi and M Flaska, Radiat. Meas. 49, 109 (2013)

    Article  Google Scholar 

  8. H Zhu, Y Altmann, A Fulvio, S McLaughlin, S Pozzi and A Hero, IEEE Trans. Nucl. Sci. 66, 2265 (2019)

    Article  ADS  Google Scholar 

  9. M Reginatto and P Goldhagen, Health Phys. 77, 579 (1999)

    Article  Google Scholar 

  10. M Reginatto, P Goldhagen and S Neumann, Nucl. Instrum. Methods Phys. Res. A 476, 242 (2002)

    Article  ADS  Google Scholar 

  11. M Matzke, Unfolding of pulse height spectra: The HEPRO program system (PTB-N-19) (1994)

  12. R Koohi-Fayegh, S Green, N Crout, G Taylor and M Scott, Nucl. Instrum. Methods Phys. Res. A 329, 269 (1993)

    Article  ADS  Google Scholar 

  13. S Avdic, S A Pozzi and V Protopopescu, Nucl. Instrum. Methods Phys. Res. A 565, 742 (2006)

    Article  ADS  Google Scholar 

  14. H R Vega-Carrillo, V M Hernández-Dávila, E Manzanares-Acuña, G A M Sánchez, M P I de la Torre, R Barquero, F Palacios, R M Villafañe, T A Arteaga and J M O Rodriguez, Radiat. Meas. 41, 425 (2006)

    Article  Google Scholar 

  15. B Mukherjee, Nucl. Instrum. Methods Phys. Res. A 432, 305 (1999)

    Article  ADS  Google Scholar 

  16. D W Freeman, D R Edwards and A E Bolon, Nucl. Instrum. Methods Phys. Res. A 425, 549 (1999)

    Article  ADS  Google Scholar 

  17. V Suman and P Sarkar, Nucl. Instrum. Methods Phys. Res. A 737, 76 (2014)

    Article  ADS  Google Scholar 

  18. H Shahabinejad, S Hosseini and M Sohrabpour, Nucl. Instrum. Methods Phys. Res. A 811, 82 (2016)

    Article  ADS  Google Scholar 

  19. R Sharma, S Nandy and S Bhattacharyya, Pramana– J. Phys. 66, 1125 (2006)

    Google Scholar 

  20. H Karahan and R Ozdemir, Praman – J. Phys. 91, 42 (2018)

    Google Scholar 

  21. I Halvic and S Prasad, Genetic algorithm for spectrum reconstruction of neutron sources, 60th Annual Meeting of the INMM (2019)

  22. E C Miller, S D Clarke, M Flaska, S Prasad, S A Pozzi and E Padovani, J. Nucl. Mater. 40, 34 (2012)

    Google Scholar 

  23. S Prasad, S D Clarke, S A Pozzi and E W Larsen, Nucl. Sci. Eng. 172 78 (2012)

    Article  Google Scholar 

  24. A Enqvist, C C Lawrence, B M Wieger, S A Pozzi and T N Massey, Nucl. Instrum. Methods Phys. Res. A 715, 79 (2013)

    Article  ADS  Google Scholar 

  25. M A Norsworthy, A Poitrasson-Rivière, M L Ruch, S D Clarke and S A Pozzi, Nucl. Instrum. Methods Phys. Res. A 842, 20 (2017)

    Article  ADS  Google Scholar 

  26. S A Pozzi, E Padovani and M Marseguerra, Nucl. Instrum. Methods Phys. Res. A 513, 550 (2003)

    Article  ADS  Google Scholar 

  27. International Organization for Standardization, Reference neutron radiations – part 1: Characteristics and methods of production (ISO 8529) (1989).

  28. R Weinmann-Smith, D Beddingfield, A Enqvist and M Swinhoe, Nucl. Instrum. Methods Phys. Res. A 856, 17 (2017)

    Article  ADS  Google Scholar 

  29. F Kruse, A Lefkoff, J Boardman, K Heidebrecht, A Shapiro, P Barloon and A Goetz, Remote Sens. Environ. 44, 145 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Texas A&M Engineering Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halvic, I., Prasad, S. Neutron spectrum reconstruction for liquid organic scintillators in low information scenarios via genetic algorithm. Pramana - J Phys 96, 71 (2022). https://doi.org/10.1007/s12043-022-02333-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02333-y

Keywords

PACS

Navigation