Skip to main content
Log in

Proposed concept for increasing the yield of \(^{{3}}\)He–\(^{{6}}\)Li inertial fusion energy

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The fast ignition (FI) scheme by energetic beams of light ions is one of the main approaches to increase the energy yield in an inertial fusion plasma. In this paper, the injection of a deuteron beam as a suitable laser-driven ignitor is suggested in a helium-3–lithium-6 (\(^{3}\)He–\(^{6}\)Li) plasma for FI as well. The deuteron beam slows down and deposits its energy through Coulomb and nuclear interactions. The nuclear interaction effect caused by the deuteron beam is investigated on the slowing-down process of field ions. The deuterons can fuse with field ions (both \(^{3}\)He and \(^{6}\)Li) into plasma as they slow down and provide the added energy yield. The estimation of added energy yield and the evaluation of dependent parameters have a key role in the FI of this fuel with a high fusion yield. The curvature is created in the velocity distribution function due to the nuclear interaction of the deuteron beam in high energy. Reactivity improves at low electron density and high injection energy, compared with the Maxwellian state. Temperature increase reduces the share of nuclear interaction on the slowing-down process. The result indicates that the deuteron beam adds energy to the slowing down component through nuclear interaction. This enhancement of energy is more significant for low densities at high bulk temperature and injection energy. The added energy \(\hbox {yield}\) rises with the electron temperature and for \({E}_{\mathrm{D}} > 4000~\text{ keV }\) decreases with increasing deuteron injection energy. The added yield is high when the deuteron energy is low and the electron temperature is high. The maximum yield occurs with a deuteron beam energy of about 4 MeV. For \({E}_{\mathrm{D}} =4~\text{ MeV }\), the total deposited energy \({E}_{\mathrm{total\, }{ }^{3}\mathrm{He}{+}{ }^{{6}}\mathrm{Li}}\) is about 5.4 \(\hbox {MeV}\) at \({T}_{\mathrm{e}} =200~\text{ keV }\) and is 6 MeV and 7.08 MeV at \({T}_{\mathrm{e}} =400~\text{ keV }\) and \({T}_{\mathrm{e}} =600~\text{ keV }\), respectively. The application of deuteron beam decreases the ignition energy released in the \(^{3}\)He–\(^{6}\)Li fusion plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S Atzeni, M Temporal and J J Honrubia, Nucl. Fusion 42, L1 (2002)

    Article  ADS  Google Scholar 

  2. J C Fernandez et al, Nucl. Fusion 54, 054006 (2014)

    Article  ADS  Google Scholar 

  3. J Badziak, S Jabłoński and J Wołowski, Plasma Phys. Control. Fusion 49, B651 (2007)

    Article  ADS  Google Scholar 

  4. C D Zhou and R Betti, Phys. Plasmas 14, 072703 (2007)

    Article  ADS  Google Scholar 

  5. R S Craxton et al, Phys. Plasmas 22, 110501 (2015)

    Article  ADS  Google Scholar 

  6. O R Gasparyan et al, J. Russ. Laser Res. 34, 33 (2013)

    Article  Google Scholar 

  7. SY Gus’kov, D V Il’in and V E Sherman, Plasma Phys. Rep. 40, 572 (2014)

    Article  ADS  Google Scholar 

  8. S Y Gus’kov, N V Zmitrenko, D V Il’in and V E Sherman, Plasma Phys. Rep. 41, 725 (2015)

    Article  ADS  Google Scholar 

  9. H Hora et al, Phys. Plasmas 14, 072701 (2007)

    Article  ADS  Google Scholar 

  10. H Hora and G H Miley, In Pacific Basin Nuclear Conference (Australian Nuclear Association, 2006) p. 265

  11. S T Butler and C A Pearson, Phys. Rev. 129, 836 (1963)

    Article  ADS  Google Scholar 

  12. D C Moreau, Nucl. Fusion 17, 13 (1977)

    Article  ADS  Google Scholar 

  13. J M Martinez-Val, S Eliezer, M Piera and G Velarde, Plasmas. Phys. Lett. A 216, 142 (1996)

    Article  ADS  Google Scholar 

  14. V S Belyaev et al, Phys. Rev. E 72, 026406 (2005)

    Article  ADS  Google Scholar 

  15. M S Wallace, B D Hammel, S Haque, P Neill and R Presura, Phys. Plasmas 25, 113101 (2018)

    Article  ADS  Google Scholar 

  16. T A Mehlhorn, Conference No. SAND-79-1927C (1980)

  17. J Lindl, Phys. Plasmas 2, 3933 (1995)

    Article  ADS  Google Scholar 

  18. V Y Bychenkov, W Rozmus, A Maksimchuk, D Umstadter and C E Capjack, Plasma Phys. Rep. 27, 1017 (2001)

    Article  ADS  Google Scholar 

  19. C Labaune et al, Nat. Commun. 4, 1 (2013)

    Article  Google Scholar 

  20. U Bardi, Sustainability 2, 980 (2010)

    Article  Google Scholar 

  21. C R Gould and J R Boyce, Nucl. Sci. Eng. 60, 477 (1976)

    Article  Google Scholar 

  22. M Mahdavi, T Koohrokhi, B Kaleji and B Jalalee, Int. J. Mod. Phys. 19, 141 (2010)

    Article  ADS  Google Scholar 

  23. B Brunelli and H Knoepfel, Environmental impact, and economic prospects of nuclear fusion (Springer Science and Business Media, New York, 2012) Vol. 48, p. 151

  24. S Atzeni and J Meyer-ter-Vehn, The physics of inertial fusion: Beam plasma interaction, hydrodynamics, hot dense matter (Oxford, New York, 2004) Vol. 125, p. 120

  25. B Nayak, Ann. Nucl. Energy 60, 73 (2013)

    Article  Google Scholar 

  26. L Spitzer, Physics of fully ionized gases (Courier Corporation, New York, 2006) Vol. 1, p. 115

  27. S Ichimaru, Basic principles of plasma physics (W A Benjamin Inc., London, 1973)

    Google Scholar 

  28. M Mahdavi and T Koohrokhi, Mod. Phys. Lett. A 26, 1561 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Bahmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahmani, J. Proposed concept for increasing the yield of \(^{{3}}\)He–\(^{{6}}\)Li inertial fusion energy. Pramana - J Phys 96, 137 (2022). https://doi.org/10.1007/s12043-022-02328-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02328-9

Keywords

PACS No

Navigation