Skip to main content
Log in

A model to analyse anisotropic magnetoresistance

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this study, an attempt is made to develop a model to analyse the anisotropic magnetoresistance in ferromagnetic metal films. In the model, the change in resistivity due to the changes in the scattering processes of the conduction electrons on applying an external magnetic field is proposed to be proportional to the spin–orbit interaction energy \(\Delta U_{\mathrm{SOI}}=\mu _{0}\mu M/2\). Expressions are developed which relate the resistivity of the sample under an applied external magnetic field to its initial resistivity, current density, conduction electron magnetic moment, sample length, saturation magnetisation, remanence magnetisation, coercive field and external magnetic field. The equations obtained agree well with the experimental anisotropic magnetoresistance data of the ferromagnetic films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J Daughton, J Brown, E Chen, R Beech, A Pohm and W Kude, IEEE Trans. Magn. 30(6), 4608 (1994)

    Article  ADS  Google Scholar 

  2. V Lemarquand and G Lemarquand, IEEE Trans. Magn. 31(6), 3188 (1995)

    Article  ADS  Google Scholar 

  3. K Mohri, T Uchiyama and L V Panina, Sensors Actuators A 59, 1 (1997)

    Article  Google Scholar 

  4. M I Piso, J. Magn. Magn. Mater. 201, 380 (1999)

    Article  ADS  Google Scholar 

  5. G R Pattanaik, D K Pandya and S C Kashyap, J. Electrochem. Soc. 149(7), C363 (2002)

    Article  Google Scholar 

  6. M Pasquale, J. Magn. 8(1), 60 (2003)

    Article  Google Scholar 

  7. J Lenz and A S Edelstein, IEEE Sens. J. 6(3), 631 (2006)

  8. M Bedir, Ö F Bakkaloğlu, I H Karahan and M Öztaş, Pramana – J. Phys. 66(6), 1093 (2006)

    Google Scholar 

  9. I H Karahan, Ö F Bakkaloğlu and M Bedir, Pramana – J. Phys. 68(1), 83 (2007)

    Google Scholar 

  10. M Hassan, A Zeeshan, A Majeed and R Ellahi, J. Magn. Magn. Mater. 443, 36 (2017)

    Article  ADS  Google Scholar 

  11. M M Bhatti, A Zeeshan and R Ellahi, PramanaJ. Phys. 89, 48 (2017)

  12. A Zeeshan, A Majeed, R Ellahi and Q M Z Zia, Therm. Sci. J. 22(6), 2515 (2018)

  13. A Majeed, A Zeeshan, S Z Alamri and R Ellahi, Neural. Comput. Appl. 30(6), 1947 (2018)

    Article  Google Scholar 

  14. M Sheikholeslami, R Ellahi, A Shafee and Z Li, Int. J. Num. Met. for Heat and Fluid Flow 29(3), 1079 (2019)

  15. A Sohail, M Fatima, R Ellahi and K B Akram, J. Mol. Liq. 285, 47 (2019)

    Article  Google Scholar 

  16. Y Mohammadmoradi and M Yaghobi, Pramana – J. Phys. 93(2), 25 (2019)

    Google Scholar 

  17. M R Niazian, L F Matin, M Yaghobi and A A Masoudi, Indian J. Phys. 95(6), 1131 (2021)

    Article  ADS  Google Scholar 

  18. S Kokado, M Tsunoda, K Harigaya and A Sakuma, J. Phys. Soc. Jpn. 81, 024705 (2012)

    Article  ADS  Google Scholar 

  19. I Campbell, A Fert and O Jaoul, J. Phys. C: Solid State Phys. 3, S95 (1970)

    Article  ADS  Google Scholar 

  20. A Malozemoff, Phys. Rev. B 32, 6080 (1985)

    Article  ADS  Google Scholar 

  21. M Tsunoda, H Takahashi, S Kokado, Y Komasaki, A Sakuma and M Takahashi, Appl. Phys. Exp. 3(11), 113003 (2010)

    Article  ADS  Google Scholar 

  22. C Rizal and B B Niraula, J. Nano- Electron. Phys.    7(4), 04068 (2015)

    Google Scholar 

  23. T Kasuya, Prog. Theor. Phys. 16(1), 58 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  24. T R McGuire and R I Potter, IEEE Trans. Magn. 11(4), 1018 (1975)

    Article  ADS  Google Scholar 

  25. I Bakonyi and L Peter, Prog. Mater. Sci. 55(3), 107 (2010)

    Article  Google Scholar 

  26. R C O’Handley, Modern magnetic materials: Principles and applications (John Wiley & Sons, New York, USA, 2000) p. 86, 580

  27. N F Mott, Proc. R. Soc. A 153(880), 699 (1936)

    ADS  Google Scholar 

  28. A Fert and I A Campbell, Phys. Rev. Lett. 21(16), 1190 (1968)

    Article  ADS  Google Scholar 

  29. F Gautier and B Loegel, Solid-State Commun. 11(9), 1205 (1972)

    Article  ADS  Google Scholar 

  30. J W F Dorleijn and A R Miedema, J. Phys. F: Met. Phys.    7(1), L23 (1977)

    Article  ADS  Google Scholar 

  31. B D Cullity and C D Graham, Introduction to magnetic materials (John Wiley & Sons, New Jersey, USA, 2009) p. 272

    Google Scholar 

  32. S Honda, T Okada and M Nawate, J. Magn. Magn. Mater. 165(1–3), 326 (1997)

    Article  ADS  Google Scholar 

  33. H Kockar, M Alper, T Sahin and O Karaagac, J. Magn. Magn. Mater. 322(9–12), 1095 (2010)

    Article  ADS  Google Scholar 

  34. H Kuru, H Kockar, M Alper and O Karaagac, J. Magn. Magn. Mater. 377, 59 (2015)

    Article  ADS  Google Scholar 

  35. S Mehrizi and M H Sohi, J. Mater. Sci. Mater. Electron.    26(10), 7381 (2015)

    Article  Google Scholar 

  36. K A Deepthi, R Balachandran, B H Ong, K B Tan, H Y Wong, H K Yow and S Srimala, Appl. Surf. Sci. 360(Part B), 519 (2016)

Download references

Acknowledgements

The author would like to thank Dr Michael F Thomas for his extensive comments and discussions on the microscopic mechanisms of magnetoresistance and also Prof. Dr Mürsel Alper for providing the data of Ni films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer F Bakkaloğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakkaloğlu, Ö.F. A model to analyse anisotropic magnetoresistance. Pramana - J Phys 96, 142 (2022). https://doi.org/10.1007/s12043-022-02322-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02322-1

Keywords

PACS Nos

Navigation