Skip to main content
Log in

Theoretical prediction of lanthanum composition effects on structural, electronic and thermal properties of \(\hbox {La}_{x}\hbox {Sc}_{1-x}\hbox {N}\) alloys

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this study, we have explored the structural, electronic and thermal properties of \(\hbox {La}_{x}\hbox {Sc}_{1-x}\hbox {N}\) ternary alloys in rock-salt structure using the full-potential linearised augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). To calculate the exchange-correlation energy and potential, we have used the Wu–Cohen generalised gradient approximation and the modified Becke–Johnson. We investigated the effect of composition on lattice parameters, bulk modulus and band gap. The variation of the calculated lattice constant with lanthanum composition is practically linear and shows a small deviation of the obtained results from Vegard’s law. Moreover, the effect of thermal macroscopic properties was also investigated employing the quasiharmonic Debye model, which takes into account the lattice vibrations. We have found a good accord between our results, the experimental data and previous theoretical results available in the literature for the binary compounds which can be a support for the ternary alloys in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F Tran, R Laskowski, P Blaha and K Schwarz, Phys. Rev. B 75, 115131 (2007)

    Article  ADS  Google Scholar 

  2. R K Suthar, N Y Pandya, Adwait D Mevada and P N Gajjar, J. Nano-Electron. Phys. 13, 01013 (2021)

    Article  Google Scholar 

  3. B Wu, Z Xie, J Huang, J Lin, Y Yang, L Jiang, J Huang, G Ye, C Zhao, S Yang and B Sa, Microstructures and thermodynamic properties of high-entropy alloys CoCrCuFeNi, Intermetallics, ISSN 0966-9795, Vol. 93, pp. 40–46 (2018)

  4. V Sklyarchuk, Y Plevachuk, A Yakymovych, S Eckert, G Gerbeth and K Eigenfeld, Thermophys. 30, 1400 (2009)

    Article  ADS  Google Scholar 

  5. H Kim, D A Boysen, D J Bradwell, B Chung, K Jiang, A A Tomaszowska, K Wang, W Wei and D R Sadoway, Electrochim. Acta 60, 154 (2012)

    Article  Google Scholar 

  6. C Stampfl, W Mannstadt, R Asahi and A J Freeman, Phys. Rev. B 63, 155106 (2001)

    Article  ADS  Google Scholar 

  7. M Shoaib, G Murtaza, R Khenata, M Farooq and R Ali, Comput. Mater. Sci. 79, 239246 (2013)

    Article  Google Scholar 

  8. A G Tebboune, D Rached, A N Benzair, N Sekkal and A H Belbachir, Phys. Status Solidi B 243, 2788 (2006)

    Article  ADS  Google Scholar 

  9. N Takeuchi and S E Ulloa, Phys. Rev. B 65, 235307 (2002)

    Article  ADS  Google Scholar 

  10. N Takeuchi, Phys. Rev. B 65, 045204 (2002)

    Article  ADS  Google Scholar 

  11. M J Winiarski and D Kowalska, Mater. Res. Express 6, 095910 (2019)

    Article  ADS  Google Scholar 

  12. M Ghezali, B Amrani, Y Cherchab and N Sekkal, Mater. Chem. Phys. 112, 774 (2008)

    Article  Google Scholar 

  13. A Gueddim, N Fakroun, N Bouarissa and A Villesuzanne, Mater. Chem. Phys. 118, 427 (2009)

    Article  Google Scholar 

  14. A Louhadj, M Ghezali, F Badi, N Mehnane, Y Cherchab, B Amrani, H Abid and N Sekkal, Superlatt. Microstruct. 46, 435 (2009)

    Article  ADS  Google Scholar 

  15. S Adachi, GaAs and related materials (World Scientific Publishing Co. Pvt. Ltd, 1999)

  16. O K Anderson, Phys. Rev. B 42, 3060 (1975)

    Article  ADS  Google Scholar 

  17. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz, WIEN2K, An Augmented Plane Wave, Plus Local Orbitals Program For Calculating Crystal Properties (Vienna, Austria, 2008)

    Google Scholar 

  18. P Hohenberg and W Kohn, Phys. Rev. B 136, 864 (1964)

    Article  ADS  Google Scholar 

  19. W Kohn and L S Sham, Phys. Rev. A 140, 1133 (1965)

    Article  ADS  Google Scholar 

  20. Z Wu and R E Cohen, Phys. Rev. B 73, 235116 (2006)

    Article  ADS  Google Scholar 

  21. F Tran and P Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  22. A D Becke and E R Johnson, J. Chem. Phys. 124, 221101 (2006)

    Article  ADS  Google Scholar 

  23. A Zunger, S H Wei, L G Feireira and J E Bernard, Phys. Rev. Lett. 65, 353 (1990)

    Article  ADS  Google Scholar 

  24. M A Blanco, E Francisco and Luana, Comput. Phys. Commun. 158, 57 (2004)

  25. F D Murnaghan, Proc. Natl Acad. Sci. USA 30(9), 244 (1944)

    Article  ADS  Google Scholar 

  26. S Saib and N Bouarissa, Phys. Status Solidi B 244, 1063 (2007)

    Article  ADS  Google Scholar 

  27. S Saib and N Bouarissa, Solid-State Electron. 50, 763 (2006)

    Article  ADS  Google Scholar 

  28. S Zerroug, F A Sahraoui and N Bouarissa, Eur. Phys. J. B 57, 9 (2007)

    Article  ADS  Google Scholar 

  29. J M Leger, D Ravot and J Rossat-Mignod, J. Phys. C 17, 4935 (1984)

    Article  ADS  Google Scholar 

  30. M L Cohen, Phys. Rev. B 32, 7988 (1985)

    Article  ADS  Google Scholar 

  31. L Vegard, Z. Phys. 5, 17 (1921)

    Article  ADS  Google Scholar 

  32. R W G Wyckoff. Cryst. Struct. 1, 85 (1963)

    Google Scholar 

  33. I Shirotani, K Yamanashi, J Hayashi, N Ishimatsu, O Shimomura and T Kikegawa, Solid-State Commun. 127, 573 (2003)

    Article  ADS  Google Scholar 

  34. M G Brik and C G Ma, Comput. Mater. Sci. 51, 380 (2012)

    Article  Google Scholar 

  35. B Amrani and F El Haj Hassan, Comput. Mater. Sci. 39, 563 (2007)

    Article  Google Scholar 

  36. M Ghezali, B Amrani, Y Chercheb and N Sekkal, Mater. Chem. Phys. 112, 774 (2008)

    Article  Google Scholar 

  37. S Zhang, D Holec, W Y Fu, C J Humphreys and M A Moram, Appl. Phys. 114, 133510 (2013)

    Article  Google Scholar 

  38. A Qteish, P Rinke and S M Neugebauer, Phys. Rev. B 74, 245208 (2006)

  39. D Gall, M Stadele, K Jarrendahl, I Petrov, P Desjardins, R T Haasch, T-Y Lee and J E Greene, Phys. Rev. B 63, 125119 (2001)

    Article  ADS  Google Scholar 

  40. N A Noor, N Ikram, S Ali, S Nazir, S M A Abbas and A Shaukat, J. Alloys Compd. 507, 356 (2010)

  41. R W Godby, M Schlüter and L J Sham, Phys. Rev. Lett. 56, 2415 (1986)

    Article  ADS  Google Scholar 

  42. M Städle, J A Majevski, P Vogel and A Görling, Phys. Rev. Lett. 79, 2089 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Hassasna Amira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amira, E.H., Yassine, C. & Ahd, L. Theoretical prediction of lanthanum composition effects on structural, electronic and thermal properties of \(\hbox {La}_{x}\hbox {Sc}_{1-x}\hbox {N}\) alloys. Pramana - J Phys 96, 78 (2022). https://doi.org/10.1007/s12043-022-02317-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02317-y

Keywords

PACS Nos

Navigation