Skip to main content
Log in

Probing the elastic, mechanical and thermodynamic properties of Weyl semimetals ZrX (X=S and Te)

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Weyl semimetals (WSMs) have attracted the attention of the researchers due to their fascinating properties which are analogous to that of three-dimensional graphene. The density functional theory (under generalised gradient approximation (GGA) without spin-orbit coupling, GGA with spin-orbit coupling (GGA\(+\)SOC) and GGA with Hubbard correction (GGA\(+U\))) in combination with the stress–strain approach have been utilised to investigate the elastic and mechanical properties of ZrS and ZrTe. The thermodynamic properties have been evaluated using the quasi-harmonic approximations by incorporating GGA, GGA\(+\)SOC and GGA\(+U\) approaches. The polycrystalline elastic moduli have been calculated using the single-crystal elastic constants and the mechanical stabilities have also been established. Physical parameters, such as Young’s modulus, shear modulus, Poisson’s ratio, Debye temperature and sound velocities, are also calculated. In addition, the anisotropic elastic properties such as Young’s modulus, linear compressibility, shear modulus and Poisson’s ratio as well as the anisotropic factors have been visualised in three dimensions (3D) using GGA, GGA\(+\)SOC and GGA\(+U\) approaches. The theoretical computation of thermodynamic properties such as specific heat, entropy, vibration energy and internal energy as a function of temperature for both Weyl semimetals are investigated and discussed for the first time. The calculated values of Debye temperature for ZrS (ZrTe) are 470.103 K (287.744 K), 486.572 K (298.295 K) and 442.0 K (234.346 K) using GGA approximations without SOC, with SOC and by implementing GGA\(+U\) calculations, respectively. Further, it is shown that the value of Debye temperature for ZrS is more than that of ZrTe. Hence, the present study of thermodynamic properties suggests their potential thermoelectric applications at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P Hosur and X Qi, C. R. Phys. 14, 857 (2013)

    Article  ADS  Google Scholar 

  2. Z Wang, Y Zheng, Z Shen, Y Lu, H Fang, F Sheng, Y Zhou, X Yang, Y Li, C Feng and Z A Xu, Phys. Rev. B 93, 121112 (R)(2016)

  3. N J Ghimire, Y Luo, M Neupane, D J Williams, E D Bauer and F Ronning, J.Phys.: Condens. Matter 27, 152201 (2015)

    ADS  Google Scholar 

  4. F Arnold, C Shekhar, S C Wu, Y Sun, R Donizeth dos Reis, N Kumar, M Naumann, M O Ajeesh, M Schmidt, A G Grushin, J H Bardarson, M Baenitz, D Sokolov, H Borrmann, M Nicklas, C Felser, E Hassinger and B Yan, Nat. Commun. 7, 11615 (2016)

    Article  ADS  Google Scholar 

  5. C Zhang, C Guo, H Lu, X Zhang, Z Yuan, Z Lin, J Wang and S Jia, Phys. Rev. B 92, 041203 (2015)

    Article  ADS  Google Scholar 

  6. X Huang, L Zhao, Y Long, P Wang, D Chen, Z Yang, H Liang, M Xue, H Weng, Z Fang, X Dai and G Chen, Phys. Rev. B 5, 031023 (2015)

    Google Scholar 

  7. C Shekhar, A K Nayak, Y Sun, M Schmidt, M Nicklas, I Leermakers, U Zeitler, Y Skourski, J Wosnitza, Z Liu, Y Chen, W Schnelle, H Borrmann, Y Grin, C Felser and B Yan, Nat. Phys. 11, 645 (2015)

    Article  Google Scholar 

  8. H Weng, C Fang, Z Fang and X Dai, Phys. Rev. B 94, 165201 (2016)

    Article  ADS  Google Scholar 

  9. Y Gupta, M M Sinha and S S Verma, Phys. Status Solidi B 264, 1900117 (2019)

    Article  Google Scholar 

  10. Z M Zhu, G W Winkler, Q Wu, J Li and A A Soluyanov, Phys. Rev. X 6, 031003 (2016)

    Google Scholar 

  11. G W Winkler, Q S Wu, M Troyer, P Krogstrup and A A Soluyanov, Phys. Rev. Lett. 117, 076403 (2016)

    Article  ADS  Google Scholar 

  12. W L Zhu, J B He, S Zhang, D Chen, L Shan, Z A Ren and G F Chen, Phys. Rev. B 101, 245127 (2020)

    Article  ADS  Google Scholar 

  13. J Li, Q Xie, S Ullah, R Li, H Ma, D Li, Y Li and X Q Chen, Phys. Rev. B 97, 054305 (2018)

    Article  ADS  Google Scholar 

  14. Y Gupta, M M Sinha and S S Verma, Physica C 577, 1353714 (2020)

    Article  ADS  Google Scholar 

  15. T Ouyang, H P Xiao, C Tang, M Hu and J X Zhong, Phys. Chem. Chem. Phys. 18, 16709 (2016)

    Article  Google Scholar 

  16. B Peng, H Zhang, H Z Shao, H L Lu, D W Zhang and H Y Zhua, Nano Energy 30, 225 (2016)

    Article  Google Scholar 

  17. J Buckeridge, D Jevdokimovs, C R A Catlow and A A Sokol, Phys. Rev. B 93, 125205 (2016)

    Article  ADS  Google Scholar 

  18. S D Guo, J. Phys.: Condens. Matter 29, 435704 (2017)

    Google Scholar 

  19. Y Gupta, M M Sinha and S S Verma, Physica B 590, 412222 (2020)

    Article  Google Scholar 

  20. W Y Ching, Y N Xu, B N Harmon, J Ye and T C Leung, Phys. Rev. B 42, 4460 (1990)

    Article  ADS  Google Scholar 

  21. Y Kong and F Li, Phys. Rev. B 56, 3153 (1997)

    Article  ADS  Google Scholar 

  22. Y Wang, Z K Liu and L Q Chen, Acta. Mater. 52, 2665 (2004)

    Article  ADS  Google Scholar 

  23. S L Shang, Y Wang, D Kim and Z K Liu, Comput. Mater. Sci. 47, 1040 (2010)

    Article  Google Scholar 

  24. P Hohenberg and W Kohn, Phys. Rev. 136 , B864 (1964)

    Article  ADS  Google Scholar 

  25. W Kohn and L J Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  26. P Giannozzi et al, J. Phys.: Condens. Matter 21 (39), 395502 (2009)

    Google Scholar 

  27. J P Perdew, K Burke and M Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  28. N Marzari, D Vanderbilt, A D Vita and M C Payne, Surf. Phys. Rev. Lett. 82, 3296 (1999)

    Article  ADS  Google Scholar 

  29. H J Monkhorst and J D Pack, Phys. Rev. B 13, 5188(1976)

    Article  ADS  MathSciNet  Google Scholar 

  30. C Lee and X Gonze, Phys. Rev. B 51, 8610 (1995)

    Article  ADS  Google Scholar 

  31. I Timrov, N Marzari and M Cococcioni, Phys. Rev. B 98, 085127 (2018)

    Article  ADS  Google Scholar 

  32. Y Lu, B T Wang, R W Li, H L Shi and P Zhang, J. Nucl. Mater. 410, 46 (2011)

    Article  ADS  Google Scholar 

  33. W Voigt, Lehrbuch der Kristallphysik: mitAusschlu\(\beta \) der Kristalloptik (Leipzig-viewg+TeubnerVerlag, 1966).

  34. A Reuss, Z. Angew. Math. Mech. 9, 49 (1929)

    Google Scholar 

  35. R Hill, Proc. Phys. Soc. Sect. A 65, 349 (1952)

    Article  ADS  Google Scholar 

  36. Y Gupta, M M Sinha and S S Verma, J. Solid State Chem. 304, 122601 (2021)

    Article  Google Scholar 

  37. Y Gupta, M M Sinha and S S Verma, Mater. Chem. Phys. 265, 124518 (2021)

    Article  Google Scholar 

  38. Y Gupta, M M Sinha and S S Verma, Mater. Today Commun. 27, 102195 (2021)

    Article  Google Scholar 

  39. J Haines, J M Leger and G Bocquillion, Annu. Rev. Mater. Res. 31, 1 (2001)

    Article  ADS  Google Scholar 

  40. R Gaillac, P Pullumbi and F X Coudert, J. Phys.: Condens. Matter. 28, 275201 (2016)

    Google Scholar 

  41. R Li, Y Duan, Philo. Mag., https://doi.org/10.1080/14786435.2016.1234081 (2016)

  42. V Mankad, N Rathod, S D Gupta, S K Gupta and P K Jha, Mater. Phys. Chem. 129, 816 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhit Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, Y., Sinha, M.M. & Verma, S.S. Probing the elastic, mechanical and thermodynamic properties of Weyl semimetals ZrX (X=S and Te). Pramana - J Phys 96, 75 (2022). https://doi.org/10.1007/s12043-022-02315-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02315-0

Keywords

PACS Nos

Navigation