Skip to main content
Log in

Polarisation-insensitive and broadband band-stop metamaterial filter for THz waves

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper describes the design and analysis of the tri-band metamaterial band-stop filter for terahertz applications. The design consists of a structured gold metallic patch over a flexible polyimide substrate. The thicknesses of the substrate and the metallic patch are 125 and 1 \(\mu \hbox {m}\), respectively. The simulation results reveal that the designed structure resonates at three frequencies: \(f_{1}=0.6\) THz, \(f_{2}=1.4\) THz and \(f_{3}=2.4\) THz. The proposed structure has polarisation-insensitive and angle-resolved transmission characteristics. The structure has 200 GHz and 800 GHz bandwidths at \(f_{1}\) and \(f_{2}\). This proves that the proposed design will be useful for broadband terahertz applications. The multiband resonances have been confirmed and analysed using the field and surface current distributions. These multiband resonances were due to the combination of electric dipolar, quad polar and magnetic dipolar resonance behaviour of the patterned metallic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y Liu and X Zhang, Chem. Soc. Rev. 40, 2494 (2011)

    Article  Google Scholar 

  2. J Sun and N M Litchinitser, Metamaterials, in: Fundamentals and applications of nanophotonics (Elsevier, Amsterdam, 2016) pp. 253–307

    Book  Google Scholar 

  3. E Manikandan, B S Sreeja, S Radha, R N Bathe, R Jain and S Prabhu, J. Infrared Millim. Terahertz Waves 40, 38 (2019)

    Article  Google Scholar 

  4. F Bilotti and L Sevgi, Int. J. RF Microw. Comput. Eng. 22, 422 (2012)

    Article  Google Scholar 

  5. I Buriak, V Zhurba, G Vorobjov, V Kulizhko, O Kononov and R Oleksandr, J. Nano-Electron. Phys. 8, 1 (2016)

    Article  Google Scholar 

  6. E Manikandan, B S Sreeja, S Radha and R N Bathe, Mater. Lett. 229, 320 (2018)

    Article  Google Scholar 

  7. T Meng, D Hu and Q Zhu, Opt. Commun. 415, 151 (2018)

    Article  ADS  Google Scholar 

  8. M Tonouchi, Nat. Photon. 1, 97 (2007)

    Article  ADS  Google Scholar 

  9. A Y Pawar, D D Sonawane, K B Erande and D V Derle, Drug Invent. Today 5, 157 (2013)

    Article  Google Scholar 

  10. R Dickie, R Cahill, V Fusco, H S Gamble and N Mitchell, IEEE Trans. Terahertz Sci. Technol. 1, 450 (2011)

    Article  ADS  Google Scholar 

  11. Y Yang, Y Xu, B Zhang, J Duan, L Yan, H Xu, Y Liu and Y Shi, Opt. Commun. 438, 39 (2019)

    Article  ADS  Google Scholar 

  12. J Cunningham, C Wood, A G Davies, I Hunter and E H Linfield, Appl. Phys. Lett. 86, 213503 (2005)

    Article  ADS  Google Scholar 

  13. Z Y Li and Y J J Ding, Broadband stopband filter for terahertz wave based on multi-layer metamaterial microstructure, 2012 Conf. Lasers Electro-Optics 3–4 (2012)

  14. O Sushko, M Pigeon, R S Donnan, T Kreouzis, C G Parini and R Dubrovka, IEEE Trans. Terahertz Sci. Technol. 7, 184 (2017)

    Article  ADS  Google Scholar 

  15. S Bhattacharyya and K Vaibhav Srivastava, J. Appl. Phys. 115, 064508 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthigeyan, K.A., Radha, S. & Manikandan, E. Polarisation-insensitive and broadband band-stop metamaterial filter for THz waves. Pramana - J Phys 96, 65 (2022). https://doi.org/10.1007/s12043-022-02314-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02314-1

Keywords

PACS

Navigation