Skip to main content
Log in

Analytical approach for travelling wave solution of non-linear fifth-order time-fractional Korteweg–De Vries equation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we have studied analytical travelling wave solution of a non-linear fifth-order time-fractional Korteweg–De Vries (KdV) equation under the conformal fractional derivative. This equation is very important as it has many applications in various fields such as fluid dynamics, plasma physics, shallow water waves etc. Also, most importantly, the considered fractional-order derivative plays a vital role as it can be varied to obtain different waves. Here, a new form of exact travelling wave solution is derived using the powerful sine–cosine method. To understand the physical phenomena, some visual representations of the solution by varying different parameters are given. Accordingly, it has been observed that the obtained wave solutions are solitons in nature. Also, from the results, one can conclude that the corresponding wave of the solution will translate from left to right by increasing the fractional order \(\alpha \). Furthermore, extending the range of x it can be noticed that there is a reduction in the heights of the waves. Also similar observations have been made for a particular time interval and by increasing the values of x. Also, it can be observed that the present method is straightforward as well as computationally efficient compared to the existing methods. The obtained solution has been verified using Maple software and the results are validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A R Seadawy, Comput. Math. Appl. 70(4), 345 (2015)

    Article  MathSciNet  Google Scholar 

  2. H Jafari, N Kadkhoda, M Azadi and M Yaghobi, Scientifica Iranica. B 24(1), 302 (2017)

    Article  Google Scholar 

  3. K Hosseini, P Mayeli, A Bekir and O Guner, Commun. Theor. Phys. 69(1), 1 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  4. K Hosseini, A Bekir, M Kaplan and O Guner, Opt. Quant. Electron. 49(11), 343 (2017)

    Article  Google Scholar 

  5. A Babaei, H Jafari and M Ahmadi, Math. Meth. Appl. Sci. 42(7), 2334 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. J Singh, Chaos Solitons Fractals 140, 110127-1 (2020)

    Article  MathSciNet  Google Scholar 

  7. N D Phuong, N A Tuan, D Kumar and N H Tuan, Math. Model. Nat. Phenom. 16, 27-1 (2021)

    Article  Google Scholar 

  8. J Singh, D Kumar, S Purohit and A Mani, Numer. Meth. Partial Differ. Equ. 37(2), 1631 (2021)

    Article  Google Scholar 

  9. A Majeed, M Kamran, M Abbas and J Singh, Front. Phys. 8, 293 (2020)

    Article  Google Scholar 

  10. H Singh, R Pandey and D Kumar, Int. J. Nonlinear Sci. Numer. Simul. (2020), https://doi.org/10.1515/ijnsns-2019-0272

  11. M M Khader, K M Saad, Z Hammouch and D Baleanu, Appl. Numer. Math. 161, 137 (2021)

    Article  MathSciNet  Google Scholar 

  12. M Yavuz, T A Sulaiman, A Yusuf and T Abdeljawad, Alexandria Eng. J. 60(2), 2715 (2021)

    Article  Google Scholar 

  13. J G Liu, X J Yang, Y Y Feng, P Cui and L L Geng, J. Geometry Phys. (2021), https://doi.org/10.1016/j.geomphys.2020.104000

  14. S Sain, A Ghose-Choudhury and S Garai, Eur. Phys. J. Plus 136, 226-1 (2021)

    Article  Google Scholar 

  15. D Lu, M Suleman, M Ramzan and J U Rahman, Int. J. Mod. Phys. B 35(2), 2150023-1 (2021)

    Article  ADS  Google Scholar 

  16. P Veeresha, D G Prakasha, N Magesh, A J Christopher and D U Sarwe, J. Ocean Eng. Sci. 6(3), 265 (2021)

    Article  Google Scholar 

  17. K Singla and R K Gupta, Proceedings of International Conference on Trends in Computational and Cognitive Engineering (2021), https://doi.org/10.1007/978-981-15-5414-8-2

  18. H Jafari, H K Jassim, D Baleanu and Y M Chu, Fractals 29(5), 2140012-1 (2021)

    Article  ADS  Google Scholar 

  19. G W Wang, T Z Xu and T Feng, PLoS ONE 9(2), e88336-1 (2014)

    Article  ADS  Google Scholar 

  20. H Liu, Stud. Appl. Math. 131, 317 (2013)

    Article  MathSciNet  Google Scholar 

  21. D Lu, C Yue and M Arshad, Adv. Math. Phys. 2017, 6743276-1 (2017)

    Article  Google Scholar 

  22. T Liu, Symmetry 11(6), 742-1 (2019)

    Article  Google Scholar 

  23. H Triki and A M Wazwaz, Commun. Nonlinear Sci. Numer. Simulat. 19, 404 (2014)

    Article  ADS  Google Scholar 

  24. J Sabiau, A Jibril and A M Gadu, J. Taibah Uni. Sci. 13, 91 (2019)

    Article  Google Scholar 

  25. D Sherriffe, D Behera and P Nagarani, Mod. Phys. Lett. B (2021), https://doi.org/10.1142/S0217984921504923

  26. O A Ilhan and J Manafian, Revista Mexicana de Fisica 65(6), 658 (2019)

    Article  MathSciNet  Google Scholar 

  27. Y Gurefe, Revista Mexicana de Fisica 66(6), 771 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewer and editor for their valuable suggestions and comments to improve the quality and clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diptiranjan Behera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherriffe, D., Behera, D. Analytical approach for travelling wave solution of non-linear fifth-order time-fractional Korteweg–De Vries equation. Pramana - J Phys 96, 64 (2022). https://doi.org/10.1007/s12043-022-02313-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02313-2

Keywords

PACS Nos

Navigation