Skip to main content
Log in

Simulating chaotic dynamics with variable polarisation of VCSEL twin lasers using FBG as a dynamic sensor

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this simulation study, the dynamics of a twin vertical-cavity surface-emitting laser (VCSEL) subjected to optical injection are studied. A special novel configuration includes two laser devices, of which one is considered as the injector, while the other is considered as the transmitter. The signal for the first laser, LD1, is directed towards the second, LD2, which is responsible for chaotic transmission. During the signal trip from LD1 to LD2, the signal is separated into two parts by fibre Bragg grating (FBG). This is to change some signal properties. Results indicated that moderate bandwidth chaotic emission is available outside the laser device cavity. Contrary to conventional edge-emitting lasers, it is found that VCSELs operate with fewer modes and higher amplitudes. The selected properties for the simulated signal are: LD SEED, polarisation, FBG applied stress and temperature. The resulting lasing modes range from chaotic to enhanced modes. To ensure independent dynamics, cross-correlation (CC) between LD1 (which is responsible for perturbation) and LD2 antisynchronisation is approved. The CC for these two lasers ranged from \(-0.0028\) to \(-6.5\hbox {E}{-}05\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E Jayaprasath and S Sivprakasam, Pramana – J. Phys. 76, 89 (2017)

    Google Scholar 

  2. S Damodarakurup, R Soorat and A Vudayagiri, Pramana – J. Phys. 92, 59 (2019)

    Article  ADS  Google Scholar 

  3. R Vicente, J Mulet, C R Mirasso and M Sciamanna, Proc. SPIE 6184, 618413 (2006)

    Article  Google Scholar 

  4. G G Ignace, Polarization switching, locking and synchronization in VCSELs with optical injection, Ph.D. Dissertation (Université Paul Verlaine Metz and the Vrije Universiteit, 2008)

  5. M Virte, Chaos 26, 053108 (2016)

    Article  ADS  Google Scholar 

  6. B Jiang, Z Wu, T Deng, J Chen, F Yang, J Chen, Q Liang and G Xia, IEEE J. Quantum Electron. 52(11), 2400707 (2016)

  7. E Jayaprasath, Y Hou, Z Wu and G Xia, IEEE Access 6, 58482 (2018)

    Article  Google Scholar 

  8. M Virte, Two-mode dynamics and switching in quantum dot lasers, Ph.D. thesis (Supelec University, 2014)

  9. J Chen, Z Wu, X Tang, T Deng, L Fan, Z Zhong and G Xia, Opt. Express 23(6), 7175 (2015)

    ADS  Google Scholar 

  10. S Tomida, R Shogenji and J Ohtsubo, Opt. Rev. 20(4), 314 (2013)

    Article  Google Scholar 

  11. K Panajotov and M Tlidi, Phys. Opt. 26, 1 (2018), arXiv:1811.10350v1

  12. D Zhong, G Yang, N Zeng, H Yang, Z Xu and J Xi, Opt. Express 28(7), 10363 (2020)

    Article  ADS  Google Scholar 

  13. J Martin Regalado, S Balle, M San Miguel, A Valle and L Pesquera, Quant. Semiclass. Opt. 9(5) (1997)

  14. M Virte, Member and Francesco Ferranti, arXiv:1902.00055v3 Phys. Opt., 2019

  15. J Liu, H Chen, and S Tang, Dynamics and synchronization of semiconductor lasers for chaotic optical communications (Springer, New York, 2006), https://doi.org/10.1007/0-387-29788-X_10

  16. Ayser A Hemed, J. College Education no. 1 (2016)

  17. A A Hemed, B T Chead and H J Kbashi, J. College Education, Mustansiriyah University, 1, 35 (2015)

  18. A H Mohammed and A A Hemed, J. University Kerbala 15(1), 40 (2017)

    Google Scholar 

  19. R S Abbas and A A Hemed, J. Phys.: Conf. Ser. 1818, 012155 (2021), https://doi.org/10.1088/1742-6596/1818/1/012155

    Article  Google Scholar 

  20. A A Hemed and R S Abbas, AIP Conf. Proc. 2290, 050021 (2020), https://doi.org/10.1063/5.0027428

    Article  Google Scholar 

  21. A M Suhail, B T Chead, H J Kbashi and A A Hemed, Chaos, https://www.researchgate.net/publication/339127780

  22. A A Hemed, Chaos generation methods in optical communication systems, A Thesis submitted to the committee of the college of Science, University of Baghdad, in partial fulfillment of requirements for the degree of Doctor of Philosophy in Physics, June (2011)

  23. A A Hemed, Z R Ghayib and H G Rashid, J. Phys.: Conf. Ser. 1963, 012063 (2021), https://doi.org/10.1088/1742-6596/1963/1/012063

    Article  Google Scholar 

  24. S Khorsheed, A Hemed and M Fdhala, World Sci. News 137, 42 (2019)

    Google Scholar 

  25. M Virte, K Panajotov, H Thienpont and M Sciamanna, Nature Photon. 7, 60 (2013)

    Article  ADS  Google Scholar 

  26. D Wang, L Wang, P Li, T Zhao, Z Jia, Z Gao,Y Guo, Y Wang and A Wang, Photonics 6(59), 2 (2019), https://doi.org/10.3390/photonics6020059

    Article  ADS  Google Scholar 

  27. A A Hemed, T Ackemann, H J Kbashi and B T Chead, J. Phys.: Conf. Ser. 1818, 012027 (2021), https://doi.org/10.1088/1742-6596/1818/1/012027

    Article  Google Scholar 

  28. J Song, Z Zhong, L Wei, Z Wu and G Xia, Opt. Commun. 354, 213 (2015)

    Article  ADS  Google Scholar 

  29. Z Zhong, S Li, S Chan, G Xia and Z Wu, Opt. Express 23(12), 15459 (2015)

    Article  ADS  Google Scholar 

  30. D Ganziy, B Rose and O Bang, Appl. Opt. 55(23), 6156 (2016)

  31. M D Sánchez, G B Pérezb, J Castillo-Mb and S M Aguirreb, Proc. SPIE 6619, 66193K-1 (2007), 0277-786X/07/18. https://doi.org/10.1117/12.738635

  32. J El-Azab and M Hemdan, IEEE 10th International Conference on High Capacity Optical Networks and Enabling,https://doi.org/10.1109/HONET.2013.6729757 (2013)

  33. Y Doumbia, T Malica, D Wolfersberger, K Panajotov and M Sciamanna, Opt. Express 28(21), 30379 (2020)

    Article  ADS  Google Scholar 

  34. A A Hemed, Studying the effective factors on producing model birefringence (high and low) in the single-mode optical fiber, A thesis submitted to the committee of college of education, Mustansiriyah University, in partial fulfillment of the requirements for the degree of Master of Science in Physics, 2005

  35. G Millot and S Wabnitz, J. Opt. Soc. Am. B 31(11), 2754 (2014)

  36. S K Ibrahima, J A O’Dowda, V Besslera, D M Karabacakab and J M Singerab, Proc. SPIE 10208, 102080P-2 (2017)

  37. N D J C Muga, Polarization effects in fiber-optic communication Systems, Doctor thesis (Universidade de Aveiro, 2011)

  38. Y Hong, Opt. Express 21(15), 17894 (2013), https://doi.org/10.1364/OE.21.017894

    Article  ADS  Google Scholar 

  39. M D Sánchez, G B Pérez, J Castillo-M and S M Aguirre, Proc. SPIE 6619, 66193K-1 (2007), https://doi.org/10.1117/12.738635

  40. U Atsushi, Optical communication with chaotic lasers: Applications of nonlinear dynamics and synchronization (Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany, Printed in Singapore, 2012), Chapter 2, p. 44

  41. Guo Baiming, Wang Qing, Xu Bing, V Leeuwen Robert and Seurin J Francois, Proc. SPIE 7615, 76150H-1 (2010)

  42. C Degen, B Krauskopf, G Jennemann, I Fischer and W Elsäßer, J. Opt. B: Quant. Semiclass. Opt. 2, 517 (2000)

  43. Y Li, Z Wu, Z Zhong, X Yang, S Mao and G Xia, Opt. Express 22(16), 19610 (2014), https://doi.org/10.1364/OE.22.019610

    Article  ADS  Google Scholar 

  44. Z Zhong, Z Wu and G Xia, Photon. Res. 5, 6 (2017)

Download references

Acknowledgements

The authors would like to thank Mustansiriyah University (www.uomustansiriyah.edu.iq), Baghdad, Iraq for their support in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainab R Ghayib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghayib, Z.R., Hemed, A.A. Simulating chaotic dynamics with variable polarisation of VCSEL twin lasers using FBG as a dynamic sensor. Pramana - J Phys 96, 86 (2022). https://doi.org/10.1007/s12043-022-02305-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02305-2

Keywords

PACS Nos

Navigation