Skip to main content
Log in

Spin thermoelectric properties of the \(\text{ Al}_{12} \text{ N}_{12}\) molecule

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, the effect of the direction of a magnetic field has been studied in leads (electrodes with limited width) on thermoelectric properties of \(\text{ Al}_{12} \text{ N}_{12}\) cage with and without considering inelastic electron–phonon interactions. Results showed that the biggest (smallest) value of total conductivity is observed in the case of the maximum value of elastic conductivity (\(G_{\sigma , {\sigma }'}^{M}\)) with respect to the direction of the magnetic field for antiparallel (\(\uparrow \downarrow \mathrm {or}\downarrow \uparrow )\), parallel configurations (\(\downarrow \downarrow \mathrm {or}\uparrow \uparrow )\) for the left (\(\sigma =\uparrow \downarrow )\) and the right (\({\sigma }'=\uparrow \downarrow )\) lead spins, i.e., \(G_{\downarrow ,\uparrow }^{M}\,(G_{\uparrow ,\uparrow }^{M})\). The maximum number of conduction heights was seen for \(\sigma =\downarrow \) and \({\sigma }'=\uparrow \). With respect to the direction of magnetic field in the leads, the maximum value of electronic thermal conductance \((K_{e,\sigma {\sigma }'}^{\max } )\) can be arranged in the following order: \(K_{e,\downarrow \uparrow }^{\max }>K_{e,\downarrow \downarrow }^{\max }>K_{e,\uparrow \downarrow }^{\max } >K_{e,\uparrow \uparrow }^{\max }\). The direction of the magnetic field in the leads affects the numbers, height and width peaks and valleys of the first derivative of thermopower (TP). We observe the highest (deepest) peak (valley) when \(\sigma =\uparrow \) and \({\sigma }'=\downarrow \) (\(\sigma =\uparrow \) and \({\sigma }'=\uparrow \)). Also, the effect of temperature on current and tunnel magnetoresistance (TMR) was considered in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y Wada, Pure Appl. Chem. 71, 2055 (1999)

    Article  Google Scholar 

  2. C Joachim, J K Gimzewski and A Aviram, Nature 408, 541 (2000)

    Article  ADS  Google Scholar 

  3. C Dekker and M Ratner, Phys. World 14, 29 (2001)

    Article  Google Scholar 

  4. Y Xue, S Datta and M A Ratner, Chem. Phys. 281, 151 (2002)

    Article  Google Scholar 

  5. A W Ghosh and S Datta, J. Comp. Electr. 1, 515 (2002)

    Article  Google Scholar 

  6. A Nitzan and M A Ratner, Science 300, 1384 (2003)

    Article  ADS  Google Scholar 

  7. J R Heath and M A Ratner, Phys. Today 56, 43 (2003)

    Article  ADS  Google Scholar 

  8. A H Flood, J F Stoddart, D W Steuerman and J R Heath, Science 306, 2055 (2004)

    Article  Google Scholar 

  9. C R Kagan and M A Ratner, MRS Bull. 29, 376 (2004)

    Article  Google Scholar 

  10. E G Emberly and G Kirczenow, Chem. Phys. 281, 311 (2002)

    Article  Google Scholar 

  11. M Zwolak and M Di Ventra, Appl. Phys. Lett. 81, 925 (2002)

    Article  ADS  Google Scholar 

  12. W I Babiaczyk and B R Bułka, Phys. Status Solidi A 196, 169 (2003)

    Article  ADS  Google Scholar 

  13. W I Babiaczyk and B R Bułka, J. Phys.: Condens. Matter 16, 4001 (2004)

    ADS  Google Scholar 

  14. K Walczak, Physica B 365, 193 (2005)

    Article  ADS  Google Scholar 

  15. M Paulsson and S Datta, Phys. Rev. B 67, 241403 (2003)

    Article  ADS  Google Scholar 

  16. J Koch, F von Oppen, Y Oreg and E Sela, Phys. Rev. B 70, 195107 (2004)

    Article  ADS  Google Scholar 

  17. X Zheng, W Zheng, Y Wei, Z Zeng and J Wang, J. Chem. Phys. 121, 8537 (2004)

    Article  ADS  Google Scholar 

  18. D Segal, Phys. Rev. B 72, 165426 (2005)

    Article  ADS  Google Scholar 

  19. Y Dubi and M Di Ventra, Phys. Rev. B 79, 119902 (2009)

    Article  ADS  Google Scholar 

  20. Kamil Walczak, Physica B 392, 173 (2007)

    Article  ADS  Google Scholar 

  21. P Reddy, S Y Jang, R A Segalman and A Majumdar, Science 315, 1568 (2007)

    Article  ADS  Google Scholar 

  22. S H Ke, W Yang, S Curtarolo and H U Baranger, Nano Lett. 10, 3257 (2008)

    Article  ADS  Google Scholar 

  23. K A Matveev and A V Andreev, Phys. Rev. B 66, 045301 (2002)

    Article  ADS  Google Scholar 

  24. T Smith, M Tsaousidou, R Fletcher, P T Coleridge, Z R Wasilewski and Y Feng, Phys. Rev. B 67, 155328 (2003)

    Article  ADS  Google Scholar 

  25. E N Bogachek, A G Scherbakov and U Landman, Phys. Rev. B 60, 11678 (1999)

    Article  ADS  Google Scholar 

  26. B Ludolph and J M van Ruitenbeek, Phys. Rev. B 59, 12290 (1999)

    Article  ADS  Google Scholar 

  27. N J Appleyard, J T Nicholls, M Pepper, W R Tribe, M Y Simmons and D A Ritchie, Phys. Rev. B 62, R16275 (2000)

  28. M Yaghobi and F A Larijani, Indian J. Phys. 89, 257 (2015)

    Article  ADS  Google Scholar 

  29. M Yaghobi and F A Larijani, Pramana — J. Phys. 84, 155 (2015)

  30. F Zhang, Q Wu, X Wang, N Liu, J Yang, Y Hu, L Yu, X Wang, Z Hu and J Zhu, J. Phys. Chem. C 113, 4053 (2009)

  31. Q Wu, F Zhang, X Wang, C Liu, Z Hu and Y Lu, J. Phys. Chem. C 111, 12639 (2007)

    Article  Google Scholar 

  32. W Lei, D Liu, J Zhang, P Zhu, Q Cui and G Zou, Cryst. Growth Des. 9, 1489 (2009)

    Article  Google Scholar 

  33. H-S Wu, F-Q Zhang, X-H Xu, C-J Zhang and H Jiao, J. Phys. Chem. A 107, 204 (2003)

    Article  Google Scholar 

  34. M D Esrafili, R. Nurazar. 75, 17 (2014)

    Google Scholar 

  35. H Farrokhpour, H Jouypazadeh and S V Sohroforouzani, Mol. Phys. 118, 1626506 (2020)

    Article  ADS  Google Scholar 

  36. M T Baei, A Soltani, S Hashemian and H Mohammadian, Can. J. Chem. 92, 605 (2014)

    Article  Google Scholar 

  37. G D Guttman, E Ben-Jacob and D J Bergman, Phys. Rev. B 51, 17758 (1995)

    Article  ADS  Google Scholar 

  38. K Walczak, Physica B 392, 173 (2007)

    Article  ADS  Google Scholar 

  39. M R Niazian, L F Matin, M Yaghobi and A A Masoudi, Indian J Phys. 95, 1131 (2021)

    Google Scholar 

  40. M R Niazian and M Yaghobi, IJPAP 54, 123 (2016)

    Google Scholar 

  41. M J Frisch, G W Trucks, H B Schlegel, G E Scuseria, M A Robb and J A Pople, Gaussian 98 (Gaussian, Inc., Pittsburgh, PA, 1998)

    Google Scholar 

  42. J Jia, H Wang, X Pei and H Wu, Appl. Surf. Sci. 253, 4485 (2007)

    Article  ADS  Google Scholar 

  43. H Wu, X Xu, F Zhang and H Jiao, J. Phys. Chem. A 107, 6609 (2003)

    Article  Google Scholar 

  44. H Wang, J Jia, X Pei and H Wu, Chem. Phys. Lett. 118, 423 (2006)

    Google Scholar 

  45. J Dong, J Jiang, Z Wang and D Xing, Phys. Rev. B 51, 1977 (1995)

    Article  ADS  Google Scholar 

  46. Y E Putri, C Wan, Y Wang, W Norimatsu, M Kusunoki and K Koumoto, Scr. Mater. 66, 895 (2012)

    Article  Google Scholar 

  47. C Chang, W Han and A Zettl, J. Vac. Sci. Technol. B 23, 1883 (2005)

    Article  Google Scholar 

  48. Y Park, Synth. Met. 45, 173 (1991)

    Article  Google Scholar 

  49. J Vavro, M Llaguno, B Satishkumar, D Luzzi and J Fischer, Appl. Phys. Lett. 80, 1450 (2002)

    Article  ADS  Google Scholar 

  50. K Baheti, J Malen, P Doak, P Reddy, S Jang, T Tilley, A Majumdar and R Segalman, Nano Lett. 8, 715 (2008)

    Article  ADS  Google Scholar 

  51. A Shakouri, Ann. Rev. 41, 399 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, N., Yaghobi, M. & Niazian, M.R. Spin thermoelectric properties of the \(\text{ Al}_{12} \text{ N}_{12}\) molecule. Pramana - J Phys 96, 77 (2022). https://doi.org/10.1007/s12043-022-02303-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02303-4

Keywords

PACS Nos

Navigation