Skip to main content
Log in

Complexity factor for static cylindrical objects in f(GT) gravity

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The purpose of this paper is to investigate the definition of complexity for static anisotropic cylindrical objects in the background of f(GT) gravity, where G and T stand for Gauss–Bonnet term and trace of the energy–momentum tensor, respectively. We develop the modified field equations, Tolman–Oppenheimer–Volkoff equation, mass distribution and structure scalars. The complexity is calculated from the splitting of the Riemann tensor in terms of a complexity factor which is associated with the physical characteristics (anisotropic pressure, inhomogeneous energy density) of the system. The zero complexity condition is derived as a constraint to estimate the behaviour of two compact objects corresponding to Gokhroo and Mehra ansatz and polytropic equation of state. We conclude that the addition of f(GT) terms contribute to the increment in the complexity of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L Bergström, Rep. Prog. Phys. 63, 793 (2000)

    Article  ADS  Google Scholar 

  2. D Pietrobon, A Balbi and D Marinucci, Phys. Rev. D 74, 043524 (2006)

    Article  ADS  Google Scholar 

  3. S Nojiri and S D Odintsov, Phys. Lett. B 631, 1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. K Bamba, A N Makarenko, A N Myagky and S D Odintsov, Phys. Lett. B 732, 349 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  5. G Abbas, D Momeni, M A Ali, R Myrzakulov and S Qaisar, Astrophys. Space Sci. 357, 1 (2015)

    Article  Google Scholar 

  6. M Sharif and A Ikram, Int. J. Mod. Phys. D 26, 1750030 (2017)

    Article  ADS  Google Scholar 

  7. M F Shamir and A Saeed, J. Exp. Theor. Phys. 125, 1065 (2017)

    Article  ADS  Google Scholar 

  8. M Sharif and S Saba, Eur. Phys. J. C 78, 1 (2018)

    Article  Google Scholar 

  9. M Sharif and A Ramzan, Phys. Dark Universe 30, 100737 (2020)

    Article  Google Scholar 

  10. M Sharif and A Ikram, Eur. Phys. J. C 76, 640 (2016)

    Article  ADS  Google Scholar 

  11. M Sharif and A Ikram, Eur. Phys. J. Plus 132, 1 (2017)

    Article  Google Scholar 

  12. H Hossienkhani, V Fayaz and A Jafari, Can. J. Phys. 96, 225 (2018)

    Article  ADS  Google Scholar 

  13. M Sharif and A Naeem, Int. J. Mod. Phys. A 35, 2050121 (2020)

    Article  ADS  Google Scholar 

  14. M F Shamir, Phys. Dark Universe 32, 100794 (2021)

    Article  Google Scholar 

  15. R López-Ruiz, H L Mancini and X Calbet, Phys. Lett. A 209, 321 (1995)

    Article  ADS  Google Scholar 

  16. X Calbet and R López-Ruiz, Phys. Rev. E 63, 066116 (2001)

    Article  ADS  Google Scholar 

  17. R G Catalán, J Garay and R López-Ruiz, Phys. Rev. E 66, 011102 (2002)

    Article  ADS  Google Scholar 

  18. J Sañudo and R López-Ruiz, Phys. Lett. A 372, 5283 (2008)

    Article  ADS  Google Scholar 

  19. J Sañudo and A F Pacheco, Phys. Lett. A 373, 807 (2009)

    Article  ADS  Google Scholar 

  20. M G B De Avellar, R A De Souza, J E Horvath and D M Paret, Phys. Lett. A 378, 3481 (2014)

    Article  ADS  Google Scholar 

  21. L Herrera, Phys. Rev. D 97, 044010 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. M Sharif and I I Butt, Eur. Phys. J. C 78, 688 (2018)

    Article  ADS  Google Scholar 

  23. L Herrera, A Di Prisco and J Ospino, Phys. Rev. D 98, 104059 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. L Herrera, A Di Prisco and J Ospino, Phys. Rev. D 99, 044049 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  25. M Sharif, A Majid and M M M Nasir, Int. J. Mod. Phys. A 34, 1950210 (2019)

    Article  ADS  Google Scholar 

  26. G Abbas and R Ahmed, Astrophys. Space Sci. 364, 1 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. M Sharif and A Majid, Chin. J. Phys. 61, 38 (2019)

    Article  Google Scholar 

  28. M Sharif and A Majid, Eur. Phys. J. C 80, 1 (2020)

    Article  ADS  Google Scholar 

  29. M Sharif and A Majid, Indian J. Phys. 95 769 (2021)

    Article  ADS  Google Scholar 

  30. M Zubair and H Azmat, Phys. Dark Universe 28, 100531 (2020)

    Article  Google Scholar 

  31. Z Yousaf, M Z Bhatti, T Naseer and I Ahmad, Phys. Dark Universe 29, 100581 (2020)

    Article  Google Scholar 

  32. Z Yousaf, M Z Bhatti and T Naseer, Phys. Dark Universe 28, 100535 (2020)

    Article  Google Scholar 

  33. Z Yousaf, M Z Bhatti and T Naseer, Ann. Phys. 420, 168267 (2020)

    Article  Google Scholar 

  34. M Sharif and A Majid, Indian J. Phys. 95, 769 (2021)

    Article  ADS  Google Scholar 

  35. Z Yousaf, M Z Bhatti and K Hassan, Eur. Phys. J. Plus 135, 397 (2020)

    Article  Google Scholar 

  36. Z Yousaf, K Bamba, M Z Bhatti and K Hassan, New Astron. 84, 101541 (2021)

    Article  Google Scholar 

  37. L Herrera, A Di Prisco and J Ospino, Gen. Relativ. Gravit. 44, 2645 (2012)

    Article  ADS  Google Scholar 

  38. M J S Houndjo, M E Rodrigues, D Momeni and R Myrzakulov, Can. J. Phys. 92, 1528 (2014)

    Article  ADS  Google Scholar 

  39. M Sharif and I I Butt, Eur. Phys. J. C 78, 850 (2018)

    Article  ADS  Google Scholar 

  40. M Sharif and I I Butt, Chin. J. Phys. 61, 238 (2019)

    Article  Google Scholar 

  41. K S Thorne, Phys. Rev. B 138, 251 (1965)

    Article  ADS  Google Scholar 

  42. K S Thorne, Phys. Rev. B 139, 244 (1965)

    Article  ADS  Google Scholar 

  43. H Chao-Guang, Acta Phys. Sin. 4, 617 (1995)

    ADS  Google Scholar 

  44. R C Tolman, Phys. Rev. 35, 875 (1930)

    Article  ADS  Google Scholar 

  45. L Herrera, A Di Prisco, J L Hernández-Pastora and N O Santos, Phys. Lett. A 237, 113 (1998)

    Article  ADS  Google Scholar 

  46. L Herrera, J Ospino, A Di Prisco, E Fuenmayor and O Troconis, Phys. Rev. D 79, 064025 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  47. M K Gokhroo and A L Mehra, Gen. Relativ. Gravit. 26, 75 (1994)

    Article  ADS  Google Scholar 

  48. L Herrera and W Barreto, Phys. Rev. 88, 084022 (2013)

    Google Scholar 

  49. L Herrera, E Fuenmayor and P Leon, Phys. Rev. D 93, 024047 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  50. L Herrera, A Di Prisco and J Ibanez, Phys. Rev. D 84, 107501 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Sharif.

Appendix A

Appendix A

The terms Z and \(\zeta \) are given as

$$\begin{aligned} Z&{=}&\frac{f_{T}}{k^{2}-f_{T}}\left[ (-p_{r}B^2-pB^2)\frac{f'_{T}}{f_{T}} {+}({-}2p_{r}B^2-pB^2)'\right. \\&{-}\left. \frac{B^2}{2}(\rho +3p) \right] ,\\ \zeta= & {} -\frac{1}{8\pi }\left[ \frac{2}{3}\Pi f_{T}+\frac{f}{2} +\frac{12A'B'f_{G}}{r^2AB^5}+\frac{12A'f_{G}'}{r^2AB^4}\right. \\&-\left. \frac{4A''f_{G}}{r^2AB^4} \right] . \end{aligned}$$

The contribution of the modified terms in the structure scalars are described by

$$\begin{aligned} N^{GT}_{\nu \mu }= & {} \left[ 2R_{m\delta }R^{m\gamma }f_{G}+2R^{lm}R^{\gamma }_{l\delta m}f_{G}-RR^{\gamma }_{\delta }f_{G} \right. \\&\left. -2R_{\delta lmn}R^{lmn\gamma }f_{G}\right. \\&+\left. 2R^{\gamma }_{\delta }\Box f_{G}+R\nabla ^{\gamma }\nabla _{\delta }f_{G} -2R^{m\gamma }\nabla _{\delta }\nabla _{m}f_{G}\right. \\&\left. -2R^{m}_{\delta }\nabla ^{\gamma }\nabla _{m}f_{G}\right. \\&-\left. 2R^{\gamma }_{l\delta m}\nabla ^{m}\nabla ^{l}f_{G}\right] \epsilon _{\nu \mu \gamma }u^{\delta }, \\ D^{GT}_{\nu \mu }= & {} 2\left[ R_{m\mu }R^{m}_{\nu }f_{G}+ R^{lm}R_{l\mu m\nu }f_{G}\right. \\&-\left. \frac{1}{2}RR_{\nu \mu }f_{G}-\frac{1}{2}R_{\mu lmn}R^{lmn}_{\nu }f_{G}\right. \\&+\left. \frac{1}{2}R \nabla _{\nu }\nabla _{\mu }f_{G}+R_{\nu \mu }\Box f_{G}-R^{m}_{\nu }\nabla _{\mu }\nabla _{m}f_{G}\right. \\&-\left. R^{m}_{\mu } \nabla _{\nu }\nabla _{m}f_{G} -R_{l\mu m\nu }\nabla ^{m}\nabla ^{l}f_{G}\right] \\&+4R^{lm}h_{\nu \mu }\nabla _{m}\nabla _{l}f_{G}-2Rh_{\nu \mu }\Box f_{G}\\&+2\left[ -R_{m\delta }R^{m}_{\nu }f_{G}- R^{lm}R_{l\delta m\nu }f_{G}\right. \\&+\left. \frac{1}{2}R_{\delta lmn}R^{lmn}_{\nu }f_{G}+\frac{1}{2}RR_{\nu \mu }f_{G} -R_{\delta \nu }\Box f_{G}\right. \\&+\left. R_{l\delta m\nu }\nabla ^{m}\nabla ^{m}f_{G}-\frac{1}{2}R \nabla _{\nu }\nabla _{\delta }f_{G}\right. \\&\left. +R^{m}_{\nu }\nabla _{\delta }\nabla _{m}f_{G} +R^{m}_{\delta }\nabla _{\nu }\nabla _{m}f_{G}\right] u_{\mu }u^{\delta }\\&+2\left[ -R_{m\mu }R^{m\gamma }f_{G} +\frac{1}{2}R_{\mu lmn}R^{lmn\gamma }f_{G}\right. \\&\left. - R^{lm}R^{\gamma }_{l\mu m}f_{G}+\frac{1}{2}RR^{\gamma }_{\mu }f_{G}-R^{\gamma }_{\mu }\Box f_{G}\right. \\&\left. {+}R^{m\gamma }\nabla _{\mu }\nabla _{m}f_{G}{-}\frac{1}{2}R \nabla ^{\gamma }\nabla _{\mu }f_{G} {+}R^{m}_{\mu }\nabla ^{\gamma }\nabla _{m}f_{G}\right. \\&\left. {+}R^{\gamma }_{m\mu l}\nabla ^{m}\nabla ^{l}\right] u_{\nu }u_{\gamma }{+} 2\Bigg [R_{m\delta }R^{m\gamma }f_{G}\\&-\left. \frac{1}{2}R_{\delta lmn}R^{lmn \gamma }f_{G}+R^{lm}R^{\gamma }_{l\delta m}f_{G}-\frac{1}{2}RR^{\gamma }_{\delta }f_{G}\right. \\&+\left. R^{\gamma }_{\delta }\Box f_{G}+\frac{1}{2}R \nabla ^{\gamma }\nabla _{\delta }f_{G}-R^{\gamma }_{l\delta m}\nabla ^{m}\nabla ^{l}f_{G}\right. \\&-R^{m\gamma }\nabla _{\delta }\nabla _{m}f_{G}-R^{m}_{\delta }\nabla ^{\gamma }\nabla _{m} f_{G}\Bigg ] g_{\nu \mu }u_{\gamma }u^{\delta }\\&-\frac{1}{3}\left[ -2R^{2}f_{G} -2R^{\beta }_{lmn}R^{lmn}_{\beta }f_{G} -2R\Box f_{G}\right. \\&{+}\left. 4R^{m\alpha }R_{m\alpha }f_{G} {+}4R^{lm}R^{\alpha }_{m\alpha l}f_{G}{+}16R^{lm}\nabla _{m}\nabla _{l}f_{G}\right. \\&-\left. 4R^{m\beta }\nabla _{\beta }\nabla _{m}f_{G} -4R^{m\alpha }\nabla _{\alpha }\nabla _{m}f_{G}\right. \\&\left. -4R^{\alpha }_{l\alpha m}\nabla ^{m}\nabla ^{l}f_{G}\right] h_{\nu \mu } -\frac{1}{6}fh_{\nu \mu },\\ F^{GT}= & {} 2\left[ R_{m\mu }R^{m}_{\nu }f_{G}+ R^{lm}R_{m\mu l\nu }f_{G}-\frac{1}{2}RR_{\nu \mu }f_{G}\right. \\&-\left. \frac{1}{2}R_{\mu \mu lmn}R^{lmn}_{\nu }f_{G}+R_{\nu \mu }\Box f_{G}\right. \\&+\left. \frac{1}{2}R \nabla _{\nu }\nabla _{\mu }f_{G} -R^{m}_{\nu }\nabla _{\mu }\nabla _{m}f_{G}\right. \\&-\left. R^{m}_{\mu }\nabla _{\nu } \nabla _{m}f_{G}-R_{m\mu l\nu }\nabla ^{m}\nabla ^{l}f_{G}\right] g^{\nu \mu }\\&+12R^{lm}\nabla _{m}\nabla _{l}f_{G}-6R\Box f_{G}\\&+2\left[ -R_{m\delta }R^{m}_{\nu }f_{G}- R^{lm}R_{m\delta l\nu }f_{G}\right. \\&\left. +\frac{1}{2}RR_{\nu \delta }f_{G}\frac{1}{2}R \nabla _{\nu }\nabla _{\delta }f_{G} -R_{\delta \nu }\Box f_{G}\right. \\&+\left. R_{m\delta l\nu }\nabla ^{m}\nabla ^{l}f_{G} +R^{m}_{\nu }\nabla _{\delta }\nabla _{m}f_{G}\right. \\&\left. +R^{m}_{\delta }\nabla _{\nu }\nabla _{m}f_{G}+\frac{1}{2}R_{\delta lmn}R^{lmn}_{\nu }f_{G}\right] u_{\mu }u^{\delta }g^{\nu \mu }\\&+2\left[ -R_{m\mu }R^{m\gamma }f_{G}- R^{lm}R^{\gamma }_{m\mu l}f_{G}{+}\frac{1}{2}RR^{\gamma }_{\mu }f_{G}\right. \\&{+}\left. \frac{1}{2}R_{\mu lmn}R^{lmn\gamma }f_{G}{-}R^{\gamma }_{\mu }\Box f_{G}+R^{m\gamma }\nabla _{\mu }\nabla _{m}f_{G}\right. \\&{+}\left. R^{m}_{\mu }\nabla ^{\gamma }\nabla _{m}f_{G}{+}R^{\gamma }_{m\mu l}\nabla ^{m}\nabla ^{l}f_{G}\right. \\&-\left. \frac{1}{2}R \nabla ^{\gamma }\nabla _{\mu }f_{G}\right] u_{\nu }u_{\gamma }g^{\nu \mu }+ 2\left[ R_{m\delta }R^{m\gamma }f_{G}\right. \\&+\left. R^{lm}R^{\gamma }_{m\delta l}f_{G}-R^{m\gamma }\nabla _{\delta }\nabla _{m}f_{G}\right. \\&-\left. \frac{1}{2}R_{\delta lmn}R^{lmn \gamma }f_{G}+R^{\gamma }_{\delta }\Box f_{G}+\frac{1}{2}R \nabla ^{\gamma }\nabla _{\delta }f_{G}\right. \\&\left. -\frac{1}{2}RR^{\gamma }_{\delta }f_{G}-R^{m}_{\delta }\nabla ^{\gamma }\nabla _{m} f_{G}\right. \\&-\left. R^{\gamma }_{m\delta l}\nabla ^{m}\nabla ^{l}f_{G}\right] g_{\nu \mu }u_{\gamma }u^{\delta }g^{\nu \mu }\\&-\left[ 4R^{l\alpha }R_{l\alpha }f_{G}+4R^{lm}R^{\alpha }_{l\alpha m}f_{G}-2R^{2}f_{G}\right. \\&-\left. 2R^{\beta }_{lmn}R^{lmn}_{\beta }f_{G}{-}2R\Box f_{G}{+}16R^{lm}\nabla _{m}\nabla _{l}f_{G}\right. \\&-\left. 4R^{m\alpha }\nabla _{\alpha }\nabla _{m}f_{G}\right. \\&-\left. 4R^{m\beta }\nabla _{\beta }\nabla _{m}f_{G} -4R^{\alpha }_{l\alpha m}\nabla ^{m}\nabla ^{l}f_{G}\right] - \frac{1}{2}f,\\ \end{aligned}$$
$$\begin{aligned} Q^{GT}_{(\nu \mu )}= & {} \left[ 2R_{md}R^{m}_{c}f_{G}+2R^{lm}R_{ldmc}f_{G}\right. \\&-\left. RR_{cd}f_{G} -R_{dlmn}R^{lmn}_{c}f_{G}+2R_{cd}\Box f_{G}\right. \\&+\left. R\nabla _{c}\nabla _{d}f_{G}-2R^{m}_{c} \nabla _{d}\nabla _{m}f_{G}\right. \\&-\left. 2R^{m}_{d}\nabla _{c}\nabla _{m}f_{G} -2R_{ldmc}\nabla ^{m}\nabla ^{l}f_{G}\right] h^{c}_{\nu }h^{d}_{\mu }\\&+2\left[ R_{m\delta }R^{m\gamma }f_{G}+ R^{lm}R^{\gamma }_{m\delta l}f_{G}\right. \\&-\left. \frac{1}{2}RR^{\gamma }_{\delta }f_{G} -\frac{1}{2}R_{\delta lmn}R^{lmn \gamma }f_{G}\right. \\&+\left. R^{\gamma }_{\delta }\Box f_{G}+\frac{1}{2}R \nabla ^{\gamma }\nabla _{\delta }f_{G}\right. \\&-\left. R^{m\gamma }\nabla _{\delta }\nabla _{m}f_{G} -R^{m}_{\delta }\nabla ^{\gamma }\nabla _{m}f_{G}\right. \\&-\left. R^{\gamma }_{m\delta l}\nabla ^{m}\nabla ^{l}f_{G}\right] h_{\nu \mu }u_{\gamma }u^{\delta }\\&-2\left[ R_{m\mu }R^{m}_{\nu }f_{G}+ R^{lm}R_{m\mu l\nu }f_{G} -\frac{1}{2}RR_{\nu \mu }f_{G}\right. \\&-\left. \frac{1}{2}R_{\mu lmn}R^{lmn}_{\nu }f_{G}+R_{\nu \mu }\Box f_{G}+\frac{1}{2}R \nabla _{\nu }\nabla _{\mu }f_{G}\right. \\&-\left. R^{m}_{\nu }\nabla _{\mu }\nabla _{m}f_{G} \right. \\&-\left. R^{m}_{\mu }\nabla _{\nu }\nabla _{m}f_{G}-R_{m\mu l\nu }\nabla ^{m} \nabla ^{l}f_{G}\right] \\&-2\left[ -R_{m\delta }R^{m}_{\nu }f_{G}- R^{lm}R_{m\delta l\nu }f_{G}\right. \\&+\left. \frac{1}{2}RR_{\nu \delta }f_{G}+\frac{1}{2}R_{\delta lmn}R^{lmn}_{\nu }f_{G}\right. \\&-\left. R_{\delta \nu }\Box f_{G}+R_{m\delta l\nu }\nabla ^{m}\nabla ^{l}f_{G}\right. \\&+\left. R^{m}_{\nu }\nabla _{\delta }\nabla _{m}f_{G} +R^{m}_{\delta }\nabla _{\nu }\nabla _{m}f_{G}\right. \\&-\left. \frac{1}{2}R \nabla _{\nu }\nabla _{\delta }f_{G}\right] u_{\mu }u^{\delta }\\&-2\left[ -R_{m\mu }R^{m\gamma }f_{G}-R^{lm}R^{\gamma }_{m\mu l}f_{G}\right. \\&\left. +\frac{1}{2}RR^{\gamma }_{\mu }f_{G}\frac{1}{2}R_{\mu lmn}R^{lmn\gamma }f_{G}-R^{\gamma }_{\mu }\Box f_{G}\right. \\&+\left. R^{m\gamma }\nabla _{\mu }\nabla _{m}f_{G}+R^{m}_{\mu } \nabla ^{\gamma }\nabla _{m}f_{G}\right. \\&\left. +R^{\gamma }_{m\mu l}\nabla ^{m}\nabla ^{l}f_{G}-\frac{1}{2}R \nabla ^{\gamma }\nabla _{\mu }f_{G}\right] u_{\nu }u_{\gamma }\\&-2\left[ R_{m\delta }R^{m\gamma }f_{G}+ R^{lm}R^{\gamma }_{m\delta l}f_{G}-\frac{1}{2}RR^{\gamma }_{\delta }f_{G}\right. \\&-\left. \frac{1}{2}R_{\delta lmn}R^{lmn \gamma }f_{G} +R^{\gamma }_{\delta }\Box f_{G}\right. \\&\left. +\frac{1}{2}R \nabla ^{\gamma }\nabla _{\delta }f_{G}-R^{m\gamma }\nabla _{\delta }\nabla _{m}f_{G}\right. \\&\left. -R^{m}_{\delta }\nabla ^{\gamma }\nabla _{m}f_{G}-R^{\gamma }_{m\delta l}\nabla ^{m}\nabla ^{l}f_{G}\right] u_{\gamma }u^{\delta }g_{\nu \mu }, \end{aligned}$$
$$\begin{aligned} M^{GT}_{\nu \mu }= & {} \left[ \frac{1}{2}R_{m\epsilon }R^{m p}f_{G}+\frac{1}{2}R^{lm}R^{p}_{m\epsilon l}f_{G}\right. \\&-\left. \frac{1}{4}RR^{p}_{\epsilon }f_{G}-\frac{1}{4}R_{\epsilon lmn}R^{lmn p}f_{G}+\frac{1}{2} R^{p}_{\epsilon }\Box f_{G}\right. \\&+\left. \frac{1}{4}R\nabla ^{p}\nabla _{\epsilon }f_{G} -\frac{1}{4}R^{lp}\nabla _{\epsilon }\nabla _{m}f_{G}\right. \\&-\left. \frac{1}{2}R^{m}_{\epsilon }\nabla ^{p}\nabla _{m} f_{G} -\frac{1}{2}R^{p}_{m\epsilon l}\nabla ^{m}\nabla ^{l}f_{G}\right] \epsilon _{p \delta \mu }\epsilon ^{\epsilon \delta }_{\nu }\\&+\left[ -\frac{1}{2}R_{m\delta }R^{lp}f_{G}-\frac{1}{2}R^{lm}R^{p}_{m\delta l}f_{G}\right. \\&+\left. \frac{1}{4}RR^{p}_{\delta }f_{G}+\frac{1}{4}R_{\delta lmn}R^{lmnp}f_{G}-\frac{1}{2}R^{p}_{\delta }\Box f_{G}\right. \\&-\left. \frac{1}{4}R\nabla ^{p}\nabla _{\delta }f_{G} +\frac{1}{4}R^{lp}\nabla _{\delta }\nabla _{m}f_{G}\right. \\&+\left. \frac{1}{2}R^{m}_{\delta }\nabla ^{p}\nabla _{m}f_{G} +\frac{1}{2}R^{p}_{m\delta l}\nabla ^{m}\nabla ^{l}f_{G}\right] \epsilon _{p\epsilon \mu }\epsilon ^{\epsilon \delta }_{\nu }\\&+\left[ -\frac{1}{2}R_{m\epsilon }R^{m\gamma }f_{G}-\frac{1}{2}R^{lm} R^{\gamma }_{m\epsilon l}f_{G} \right. \\&+\left. \frac{1}{4}RR^{\gamma }_{\epsilon }f_{G}+\frac{1}{4}R_{\epsilon lmn}R^{lmn\gamma }f_{G}-\frac{1}{2}R^{\gamma }_{\epsilon }\Box f_{G}\right. \\&\left. -\frac{1}{4}R\nabla ^{\gamma }\nabla _{\epsilon }f_{G} +\frac{1}{4}R^{m\gamma }\nabla _{\epsilon }\nabla _{m}f_{G}\right. \\&+\left. \frac{1}{2}R^{m}_{\epsilon }\nabla ^{\gamma }\nabla _{m} f_{G}+\frac{1}{2}R^{\gamma }_{m\epsilon l}\nabla ^{m} \nabla ^{l}f_{G}\right] \epsilon _{\delta \gamma \mu } \epsilon ^{\epsilon \delta }_{\nu }\\&+\left[ \frac{1}{2}R_{m\delta }R^{m\gamma }f_{G} +\frac{1}{2}R^{lm}R^{\gamma }_{m\delta l}f_{G}-\frac{1}{4}RR^{\gamma }_{\delta }f_{G}\right. \\&\left. -\frac{1}{4}R_{\delta lmn}R^{lmn\gamma }f_{G}+\frac{1}{2}R^{\gamma }_{\delta }\Box f_{G}+\frac{1}{4}R\nabla ^{\gamma }\nabla _{\delta }f_{G}\right. \\&-\left. \frac{1}{4}R^{m\gamma }\nabla _{\delta }\nabla _{m}f_{G} -\frac{1}{2}R^{m}_{\delta }\nabla ^{\gamma }\nabla _{m}f_{G}\right. \\&-\left. \frac{1}{2}R^{\gamma }_{m\delta l}\nabla ^{m}\nabla ^{l}f_{G}\right] \epsilon _{\epsilon \gamma \mu }\epsilon ^{\epsilon \delta }_{\nu }-4R^{lm}\nabla _{m}\nabla _{l}h_{\nu \mu }f_{G}\\&{+}2Rh_{\nu \mu }\Box f_{G} {+}\frac{1}{3}\bigg [-\left( \rho +p\right) f_{T}{+}4R^{m\alpha }R_{m\alpha }f_{G}\\&{+}\left. 4R^{lm}R^{\alpha }_{l\alpha m}f_{G}{-}2R^{2}f_{G} {-}2R^{\beta }_{lmn}R^{lmn}_{\beta }f_{G}\right. \\&-\left. 2R\Box f_{G} +16R^{lm}\nabla _{m}\nabla _{l}f_{G} -4R^{m\alpha }\nabla _{\alpha }\nabla _{m}f_{G}\right. \\&-4R^{m\beta }\nabla _{\beta }\nabla _{m}f_{G}-4R^{\alpha }_{l\alpha m}\nabla ^{m}\nabla ^{l}f_{G}\bigg ]h_{\nu \mu }\\&+\frac{1}{6}fh_{\nu \mu },\\ O^{GT}= & {} \left[ \frac{1}{2}R_{m\epsilon }R^{m p}f_{G}+\frac{1}{2}R^{lm}R^{p}_{m\epsilon l}f_{G}\right. \\&-\left. \frac{1}{4}RR^{p}_{\epsilon }f_{G}-\frac{1}{4}R_{\epsilon lmn}R^{lmn p}f_{G}+\frac{1}{2} R^{p}_{\epsilon }\Box f_{G}\right. \\&\left. +\frac{1}{4}R\nabla ^{p}\nabla _{\epsilon }f_{G} -\frac{1}{4}R^{lp}\nabla _{\epsilon }\nabla _{m}f_{G} \right. \\&\left. -\frac{1}{2}R^{m}_{\epsilon }\nabla ^{p}\nabla _{m} f_{G}\right. \\&-\left. \frac{1}{2}R^{p}_{m\epsilon l}\nabla ^{m}\nabla ^{l}f_{G}\right] g^{\nu \mu }\epsilon _{p \delta \mu }\epsilon ^{\epsilon \delta }_{\nu }\\&+\left[ -\frac{1}{2}R_{m\delta }R^{lp}f_{G} -\frac{1}{2}R^{lm}R^{p}_{m\delta l}f_{G}\right. \\&+\left. \frac{1}{4}RR^{p}_{\delta }f_{G}+\frac{1}{4}R_{\delta lmn}R^{lmnp}f_{G}\right. \\&-\left. \frac{1}{2}R^{p}_{\delta }\Box f_{G}-\frac{1}{4}R\nabla ^{p}\nabla _{\delta }f_{G}+\frac{1}{4}R^{lp}\nabla _{\delta }\nabla _{m}f_{G}\right. \\&\left. +\frac{1}{2} R^{m}_{\delta }\nabla ^{p}\nabla _{m}f_{G} +\frac{1}{2}R^{p}_{m\delta l}\nabla ^{m}\nabla ^{l}f_{G}\right] \\&\times g^{\nu \mu }\epsilon _{p\epsilon \mu }\epsilon ^{\epsilon \delta }_{\nu }\\&+\left[ -\frac{1}{2}R_{m\epsilon }R^{m\gamma }f_{G} -\frac{1}{2}R^{lm}R^{\gamma }_{m\epsilon l}f_{G}\right. \\&+\left. \frac{1}{4}RR^{\gamma }_{\epsilon }f_{G} +\frac{1}{4}R_{\epsilon lmn}R^{lmn\gamma }f_{G}\right. \\&-\left. \frac{1}{2}R^{\gamma }_{\epsilon }\Box f_{G}-\frac{1}{4}R\nabla ^{\gamma }\nabla _{\epsilon }f_{G} +\frac{1}{4}R^{m\gamma }\nabla _{\epsilon }\nabla _{m}f_{G}\right. \\&+\left. \frac{1}{2}R^{m}_{\epsilon }\nabla ^{\gamma }\nabla _{m} f_{G} +\frac{1}{2}R^{\gamma }_{m\epsilon l}\nabla ^{m} \nabla ^{l}f_{G}\right] \\&\times g^{\nu \mu } \epsilon _{\delta \gamma \mu }\epsilon ^{\epsilon \delta }_{\nu }\\&+\left[ \frac{1}{2}R_{m\delta }R^{m\gamma }f_{G} +\frac{1}{2}R^{lm}R^{\gamma }_{m\delta l}f_{G}\right. \\&-\left. \frac{1}{4}RR^{\gamma }_{\delta }f_{G}-\frac{1}{4}R_{\delta lmn}R^{lmn\gamma }f_{G}+\frac{1}{2}R^{\gamma }_{\delta }\Box f_{G}\right. \\&\left. +\frac{1}{4}R\nabla ^{\gamma }\nabla _{\delta }f_{G} -\frac{1}{4}R^{m\gamma }\nabla _{\delta }\nabla _{m}f_{G}\right. \\&\left. -\frac{1}{2}R^{m}_{\delta }\nabla ^{\gamma }\nabla _{m}f_{G} -\frac{1}{2}R^{\gamma }_{m\delta l}\nabla ^{m}\nabla ^{l}f_{G}\right] \\&\times g^{\nu \mu } \epsilon _{\epsilon \gamma \mu }\epsilon ^{\epsilon \delta }_{\nu }\\&- 12R^{lm}\nabla _{m}\nabla _{l}h_{\nu \mu }f_{G} +6R\Box f_{G}\\&+\left[ -\left( \rho +p\right) f_{T}+4R^{l\nu }R_{l\nu }f_{G}\right. \\&+\left. 4R^{lm}R^{\nu }_{l\nu m}f_{G}-2R^{\mu }_{lmn}R^{lmn}_{\mu }f_{G}\right. \\&\left. -2R^{2}f_{G}-2R\Box f_{G}\right. \\&+\left. 16R^{lm}\nabla _{l}\nabla _{m}f_{G} -4R^{l\mu }\nabla _{\mu }\nabla _{l}f_{G}\right. \\&\left. -4R^{l\nu }\nabla _{\nu }\nabla _{l}f_{G}\right. \\&-\left. 4R^{\nu }_{l\nu m}\nabla ^{l}\nabla ^{m}f_{G}\right] +{2}f. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Hassan, K. Complexity factor for static cylindrical objects in f(GT) gravity. Pramana - J Phys 96, 50 (2022). https://doi.org/10.1007/s12043-022-02298-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02298-y

Keywords

PACS Nos

Navigation