Skip to main content
Log in

Impact of slip on nanomaterial peristaltic pumping of magneto-Williamson nanofluid in an asymmetric channel under double-diffusivity convection

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The impacts of slip on the peristaltic transport of magneto-Williamson nanofluid under double-diffusivity convection is investigated numerically. The proposed problem is first mathematically formulated, and then simplified using a long wavelength and low Reynolds number assessment. We use Mathematica software to calculate the numerical solution because the governing equations are nonlinear. To test the numerical solution, we created graphical outputs of the main physical characteristics of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. M Mishra and A R Rao, Z. Angew. Math. Phys. 54, 532 (2004)

    Google Scholar 

  2. A H Shapiro, M Y Jaffrin and S L Weinberg J. Fluid Mech. 37, 799 (1969)

  3. M V Subba Reddy, M Mishra, S Sreenadh and A Ramachandra Rao, J. Fluids Eng. 127, 824 (2005)

    Article  Google Scholar 

  4. Safia Akram, Kh S Mekheimer and Y Abd elmaboud, Alex. Eng. J. 57, 407 (2018)

    Article  Google Scholar 

  5. A H Abd El-Naby and A E M El-Misiery, Appl. Math. Comput. 128, 19 (2002)

    MathSciNet  Google Scholar 

  6. S Nadeem and Safia Akram, Commun. Nonlinear Sci. Numer. Simul. 15, 1705 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. R Ellahi, A Riaz, S Nadeem and M Ali, Math. Probl. Eng. 2012, 329639 (2012)

    Article  Google Scholar 

  8. R Ellahi, M Mubashir Bhatti, A Riaz and M Sheikholeslami, J Porous Media 17, 143 (2014)

    Article  Google Scholar 

  9. A Riaz, A Zeeshan, S Ahmad, A Razaq and M Zubair, J. Magn. 24, 1 (2019)

    Article  Google Scholar 

  10. Safia Akram and S Nadeem, J. Magn. Magn. Mater. 328, 11 (2013)

  11. R Ellahi, A Riaz, S Sohail and M Mushtaq, Appl. Math. Inf. Sci. 7, 1441 (2013)

  12. S Haider, N Ijaz, A Zeeshan and Yun-Zhang Li, Int. J. Numer. Methods Heat Fluid Flow 30, 2501 (2019)

    Article  Google Scholar 

  13. S Munawar and N Saleem, Coatings 10, 240 (2020)

    Article  Google Scholar 

  14. S Akram, S Nadeem and M Hanif, J. Magn. Magn. Mater. 346, 142 (2013)

    Article  ADS  Google Scholar 

  15. Kh S Mekheimer, Phys. Lett. A 372, 4271 (2008)

    Article  ADS  Google Scholar 

  16. R Saravana, S Sreenadh, P Rajesh Kumar and V Ramesh Babu, J. Nav. Archit. Mar. Eng. 17, 79 (2020)

    Article  Google Scholar 

  17. S Nadeem, N S Akbar, T Hayat and S Obaidat, Int. J. Heat Mass Transf. 55, 1855 (2012)

    Article  Google Scholar 

  18. X Mandviwalla and R Archer, J. Fluids Eng. 130, 124501 (2008)

    Article  Google Scholar 

  19. A Riaz, S U D Khan, A Zeeshan, S U Khan, M Hassan and T Muhammad, J. Therm. Anal. Calorim. 143, 1997 (2021)

    Article  Google Scholar 

  20. S Akram and S Nadeem, IEEE Trans. Nanotechnol. 13, 375 (2014)

    Article  ADS  Google Scholar 

  21. S Srinivas, R Gayathri and M Kothandapani, Comput. Phys. Commun. 180, 2115 (2009)

    Article  ADS  Google Scholar 

  22. E H Aly and A Ebaid, J. Mech. 30, 411 (2014)

    Article  Google Scholar 

  23. K Vajravelu, S Sreenadh and R Saravana, Appl. Math. Comput. 225, 656 (2013)

    MathSciNet  Google Scholar 

  24. J C Maxwell, (Clarendon Press, Oxford, 1881)

  25. S U S Choi, ASME FED 66, 99 (1995)

    Google Scholar 

  26. K Khanafer, K Vafai and M Lightstone, Int. J. Heat Mass Transf. 46, 3639 (2003)

    Article  Google Scholar 

  27. S Kakac and A Pramuanjaroenkij, Int. J. Heat Mass Transf. 52, 3187 (2009)

    Article  Google Scholar 

  28. H I Andersson, Acta Mech. 158, 121 (2002

    Article  Google Scholar 

  29. C Y Wang, Chem. Eng. Sci. 57, 3745 (2002)

  30. T Fang, Ji Zhang and S Yao, Commun. Nonlinear. Sci. Numer. Simul. 14, 3731 (2009)

    Article  ADS  Google Scholar 

  31. R A Van Gorder, E Sweet and K Vajravelu, Commun. Nonlinear. Sci. Numer. Simul. 15, 1494 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  32. L Bocquet and J L Barrat, Soft Matter 3, 685 (2007)

    Article  ADS  Google Scholar 

  33. A Sharma, D Tripathi, R K Sharma and A K Tiwari, Physica A 535, 122148 (2019)

    Article  MathSciNet  Google Scholar 

  34. Q Afzal and S Akram, J. Therm. Anal. Calorim. 143, 2291 (2021)

    Article  Google Scholar 

  35. H Alolaiyan, A Riaz, A Razaq, N Saleem, A Zeeshan and M M Bhatti, Coatings 10,154 (2020)

    Article  Google Scholar 

  36. S Akram, M Athar and K Saeed, Case Stud. Therm. Eng. 25, 100965 (2021)

    Article  Google Scholar 

  37. S Akram, M Athar, K Saeed and M Y Umair, Eur. Phys. J. Plus 136, 494 (2021)

    Article  Google Scholar 

  38. O Anwar Bég and D Tripathi, Proc. Inst. Mech. Eng. N: J. Nanomater. Nanoeng. Nanosyst. 225, 99 (2012)

    Google Scholar 

  39. S Akram, M Zafar and S Nadeem, Int. J. Geom. Methods Mod. Phys. 15, 1850181 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safia Akram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, S., Athar, M., Saeed, K. et al. Impact of slip on nanomaterial peristaltic pumping of magneto-Williamson nanofluid in an asymmetric channel under double-diffusivity convection. Pramana - J Phys 96, 57 (2022). https://doi.org/10.1007/s12043-021-02287-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02287-7

Keywords

PACS

Navigation