Skip to main content

Advertisement

Log in

Molecular dynamics simulation study on nucleation mechanisms of \(\hbox {Cu}_{3}\)Au superalloy

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The nucleation kinetics of ordered intermetallic alloy of \(\hbox {Cu}_{3}\hbox {Au}\) based on \(\hbox {L}1_{2}\) superlattice are obtained by molecular dynamics simulation utilising Sutton–Chen potential under different pressures. The nucleation mechanism for the system is examined with classical nucleation theory at a slow cooling rate. The crystal-type bonded pairs described by indexes of the Honeycutt–Andersen method are considered as embryos in the system. The critical nucleus radius, the interfacial free energy and the nucleation rate are determined at given temperatures under 0, 5, 10, 15 and 20 GPa pressures. The structural properties at different pressures of the system are analysed with radial distribution function. As a result, while the critical radius and the interfacial free energies of the system decrease, the nucleation rates increase with increasing pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D Hu and R Kovacevic, Int. J. Mach. Tools Manuf. 43, 51 (2003)

    Article  Google Scholar 

  2. J Campbell, Complete casting handbook: Metal casting processes, metallurgy, techniques and design (Butterworth-Heinemann, 2015)

  3. D Uhlenhaut, J Kradolfer, W Püttgen, J Löffler and P Uggowitzer, Acta Mater. 54, 2727 (2006)

    Article  ADS  Google Scholar 

  4. A Mahata, M A Zaeem and M I Baskes, Model. Simul. Mater. Sci. Eng. 26, 025007 (2018)

    Article  ADS  Google Scholar 

  5. Y Zhang, F Luo, Q Bai, C Zhang, B Yu and Z Zhang, J. Phys. Chem. Solids 150, 109879 (2021)

    Article  Google Scholar 

  6. P P Fedorov and S N Volkov, Russ. J. Inorg. Chem. 61, 772 (2016)

    Article  Google Scholar 

  7. I Marković, V Grekulović, M R Vujasinović and S Mladenović, J. Alloys Compd. 831, 154726 (2020)

    Article  Google Scholar 

  8. A Y Tse, E K Karasz and K Sieradzki, Scr. Mater. 176, 112 (2020)

    Article  Google Scholar 

  9. Z Wang, R Liu, Z Feng, L Lin, R Xie, J Li, H Liu, F Huang and Z Zheng, Cryst. Eng. Commun. 22, 113 (2020)

    Article  Google Scholar 

  10. Q K. Li, Y Zhang and W Y Chu, Comput. Mater. Sci. 25, 510 (2002)

    Article  Google Scholar 

  11. N Artrith and A M Kolpak, Comput. Mater. Sci. 110, 20 (2015)

    Article  Google Scholar 

  12. G Chen, C Wang and P Zhang, Comput. Mater. Sci. 112, 80 (2016)

    Article  Google Scholar 

  13. C E Lekka, N I Papanicolaou and G A Evangelakis, Surf. Sci. 479, 287 (2001)

    Article  ADS  Google Scholar 

  14. H H Kart, M Tomak and T Çağin, Model. Simul. Mater. Sci. Eng. 13, 657 (2005)

    Article  ADS  Google Scholar 

  15. J W P Schmelzer, J. Non-Cryst. Solids 356, 2901 (2010)

    Google Scholar 

  16. H Vehkamäki, (Springer Science & Business Media, 2006)

  17. S Sen and T Mukerji, J. Non-Cryst. Solids 246, 229 (1999)

    Google Scholar 

  18. X Zhu and K Chen, J. Phys. Chem. Solids 66, 1732 (2005)

    Article  ADS  Google Scholar 

  19. X Zhu, J. Mol. Struct. Theochem. 680, 137 (2004)

    Article  Google Scholar 

  20. S Sengul, M Celtek and U Domekeli, Comput. Mater. Sci. 172, 109327 (2020)

    Article  Google Scholar 

  21. F A Celik and A K Yildiz, J. Non-Cryst. Solids 415, 36 (2015)

    Google Scholar 

  22. Y Wang and C Dellago, J. Phys. Chem. B 107, 9214 (2003)

    Article  Google Scholar 

  23. P R ten Wolde and D Frenkel, Phys. Chem. Chem. Phys. 1, 2191 (1999)

    Article  Google Scholar 

  24. Y Shibuta, S Sakane, T Takaki and M Ohno, Acta Mater. 105, 328 (2016)

    Article  ADS  Google Scholar 

  25. L Hui, B Xiufang and Z Jingxiang, Mater. Sci. Eng. A 271, 116 (1999)

    Article  Google Scholar 

  26. S Ozgen and E Duruk, Mater. Lett. 58, 1071 (2004)

    Article  Google Scholar 

  27. M S Daw and M I Baskes, Phys. Rev. B 29, 6443 (1984)

    Article  ADS  Google Scholar 

  28. A P Sutton and J Chen, Philos. Mag. Lett. 61, 139 (1990)

    Article  ADS  Google Scholar 

  29. H Tanaka, J. Non-Cryst. Solids 351, 678 (2005)

    Google Scholar 

  30. Y Q Yuan, X G Zeng, H Y Chen, A L Yao and Y F Hu, J. Korean Phys. Soc. 62, 1645 (2013)

    Article  ADS  Google Scholar 

  31. M Parrinello and A Rahman, Phys. Rev. Lett. 45, 1196 (1980)

    Article  ADS  Google Scholar 

  32. R Liu, K Dong, J Li, A Yu and R Zou, J. Non-Cryst. Solids 351, 612 (2005)

    Google Scholar 

  33. B Yu, Y Liang, Z Tian, R Liu, T Gao, Q Xie and Y Mo, J. Crystal Growth 535, 125533 (2020)

    Article  Google Scholar 

  34. J D Honeycutt and H C Andersen, J. Phys. Chem. 91, 4950 (1987)

    Article  Google Scholar 

  35. Z A Tian, R S Liu, H R Liu, C X Zheng, Z Y Hou and P Peng, J. Non-Cryst. Solids 354, 3705 (2008)

    Google Scholar 

  36. L Qi, S Feng, N Xu, M Ma, Q Jing, G Li, R Liu, L Qi, S Feng, N Xu, M Ma, Q Jing, G Li and R Liu, Mater. Res. 18, 78 (2015)

    Article  Google Scholar 

  37. W D Callister and D G Rethwisch, Materials science and engineering: An introduction (John Wiley & Sons, Inc., 2007) p. 311

  38. A Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Ahmet Celik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celik, F.A., Korkmaz, E.T. Molecular dynamics simulation study on nucleation mechanisms of \(\hbox {Cu}_{3}\)Au superalloy. Pramana - J Phys 96, 37 (2022). https://doi.org/10.1007/s12043-021-02285-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02285-9

Keywords

PACS Nos

Navigation