Skip to main content
Log in

A noteworthy impact of heat and mass transpiration near the unsteady rare stagnation region

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The current study deals with the influence of heat and mass transfer characteristics of viscous fluid near a moving wall with transpiration. The wall and free stream velocities are assumed to be decelerating functions. The calculated solution of unsteady Navier–Stokes equation is an exact solution. In the absence of internal energy change, the analytical solutions of energy and concentration equations are calculated for constant wall temperature near rare stagnation point. The influence of transpiration, unsteadiness parameter, Prandtl number, stretching/shrinking wall parameter and Schmidt number on the fluid, heat and mass transfer features have been shown graphically and elaborated in detail. With the particular values of the governing parameters, two branch solutions are calculated for heat and mass transfer phenomena. These closed-form outcomes are exceptional and can be used as a standard modelling for numerical code justification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F Mabood, N Pochai and S Shateyi, J. Eng. 2016, 5874864 (2016)

    Google Scholar 

  2. M Turkyilmazoglu, Chem. Eng. Sci. 238(2), 116596 (2021)

    Article  Google Scholar 

  3. A Ali and H Aberoumand, Powder Technol. 380, 152 (2021)

    Article  Google Scholar 

  4. S Dholey, Int. J. Therm. Sci. 163, 106688 (2021)

    Article  Google Scholar 

  5. X H Zhang, A Abidi, A E S Ahmed, M R Khan, M A El-Shorbagy, M Shutaywi and A M Galal, Case Stud. Therm. Eng. 26, 101184 (2021)

    Article  Google Scholar 

  6. Y M Chu, M I U Rehman, M I Khan, S Nadeem, S Kadry, Z Abdelmalek and N Abbas, Int. Commun. Heat Mass Transf. 118(11), 104858 (2020)

    Article  Google Scholar 

  7. F Al-Amri and M Muthtamilselvan, Case Stud. Therm. Eng. 21, 100656 (2020)

    Article  Google Scholar 

  8. D Pal and G Mandal, Propuls. Power Res. 9(4), 408 (2020)

    Article  Google Scholar 

  9. V S Patil, A B Patil, S Ganesh, P P Humane and N S Patil, Mater. Today Proc. 44(7), 3767 (2021)

    Article  Google Scholar 

  10. T Salahuddin, M Y Malik, A Hussain, M Awais, I Khan and M Khan, Results Phys. 7, 426 (2017)

    Article  ADS  Google Scholar 

  11. F T Smith, Ann. Rev. Fluid Mech. 18, 197 (1986)

    Article  ADS  Google Scholar 

  12. F M White, Viscous fluid flow, 2nd edn (McGraw-Hill, New York, 1991)

    Google Scholar 

  13. H Schlichting and K Gersten, Boundary layer theory, 8th Revised and Enlarged Edition (English) (Springer, New York, 2000)

  14. K T Yang, Trans. ASME J. Appl. Mech. 25, 197 (1958)

  15. J C Williams III, AIAA J. 6(12), 197 (1968)

    Article  Google Scholar 

  16. D F Jankowski and J M Gersting, AIAA J. 8(1), 187 (1970)

    Article  ADS  Google Scholar 

  17. I Teipel, Mech. Res. Commun. 6(1), 27 (1979)

    Article  Google Scholar 

  18. C Y Wang, Phys. Fluids 28(7), 2046 (1985)

    Article  ADS  Google Scholar 

  19. G I Burde, ASME Trans. J. Fluid Eng. 117, 189 (1995)

    Article  Google Scholar 

  20. T Fang, C F Lee, J Zhang, Int. J. Non Linear Mech. 46(7), 942 (2011)

    Article  ADS  Google Scholar 

  21. D K Ludlow, P A Clarkson and A P Bassom, Q. J. Mech. Appl. Math. 53(2), 175 (2000)

    Article  Google Scholar 

  22. A Zeeshan, M Awais, F Alzahrania and N Shehzad, Heat Transf. 50(6), 6189 (2021)

    Article  Google Scholar 

  23. T Salahuddin, M Awais, M Khan and M Altanji, Int. Commun. Heat Mass Transf. 129, (2021)

  24. T Salahuddin, M Awais and W F Xia, Case Stud. Therm. Eng. 25, 100971 (2021)

  25. T Salahuddin, M Awais and Z Salleh, J. Mater. Res. Technol. 14, 901 (2021)

    Article  Google Scholar 

  26. M Y Malik and T Salahuddin, Int. J. Nonlinear Sci. Numer. Simul. 16(3–4), 161 (2015)

    Article  MathSciNet  Google Scholar 

  27. M Khan, A Shahid, M Y Malik and T Salahuddin, J. Mol. Liq. 251, 7 (2018)

    Article  Google Scholar 

  28. T Fang, S Yao and I Pop, Int. J. Non-Linear Mech. 46, 1116 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Salahuddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahuddin, T., Khan, M. & Awais, M. A noteworthy impact of heat and mass transpiration near the unsteady rare stagnation region. Pramana - J Phys 96, 48 (2022). https://doi.org/10.1007/s12043-021-02283-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02283-x

Keywords

PACS

Navigation