Skip to main content
Log in

Teleporting DV qubit to CV qubit and vice versa via DV-CV hybrid entanglement across lossy environment supervised simultaneously by both DV and CV controllers

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A salient merit of processing quantum information is the ability of simultaneously working with both bit zero and bit one. The basic unit of quantum information, the so-called qubit, is a superposition of two orthogonal (or near-orthogonal) quantum states which can be realised on distinct physical platforms. At present, no unique qubit encoding exists that is superior to all the other ones. Different labs are implementing their most convenient technique for encoding the qubit and so the network of labs becomes heterogeneous. In this paper, we consider two types of qubit encodings, one is the single-rail qubit in terms of discrete-variable (DV) states \(\left| 0\right\rangle \) and \(\left| 1\right\rangle \) which are respectively the vacuum and the single-photon state and the other is the coherent-state qubit in terms of continuous-variable (CV) states \(\left| \alpha \right\rangle \) and \(\left| -\alpha \right\rangle \) which are coherent states with equal amplitudes but opposite phases. We devise linear-optics schemes to teleport one type of qubit to the other type. More than that, our teleportation schemes are designed so that two kinds of controllers, one is capable of manipulating single-rail qubits (DV controller) while the other coherent-state ones (CV controller), are able to simultaneously supervise the tasks in both directions. We first propose a quantum circuit to prepare a relevant four-party pure entangled state serving as a quantum channel between the four participants: two teleporters and two controllers. We then detail the hybrid controlled teleportation protocols taking into account the dissipation effect caused by the presence of losses in the environment surrounding the participants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M A Nielsen and I L Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, UK, 2000)

  2. E Knill, L Laflamme and G J Milburn, Nature 46, 409 (2001)

    Google Scholar 

  3. P Kok, W J Munro, K Nemoto, T C Ralph, J P Dowling and G J Milburn, Rev. Mod. Phys. 79, 135 (2007)

    Article  ADS  Google Scholar 

  4. S L Braunstein and A Pati (eds) Continuous variable quantum information (Kluwer Academic, 2003)

  5. S L Braunstein and P van Loock, Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  Google Scholar 

  6. S Choudhury and P K Panigrahi, AIP Conf. Proc. 1384, 91 (2011)

    Article  ADS  Google Scholar 

  7. N Lütkenhaus, J Calsamiglia and K A Suominen, Phys. Rev. A 59, 3245 (1999)

    ADS  Google Scholar 

  8. D Bouwmeester, J W Pan, K Mattle, M Eible, H Weinfurter and A Zeilinger, Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  9. D Boschi, S Branca, F De Martini, L Harcy and S Popescu, Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  10. H Jeong, M S Kim and J Lee, Phys. Rev. A 64, 052308 (2001)

    Article  ADS  Google Scholar 

  11. H Prakash, N Chandra, R Prakash and Shivani, Phys. Rev. A 75, 044305 (2007)

  12. T B Pittman, M J Fitch, B C Jacobs and J D Franson, Phys. Rev. A 68, 032316 (2003)

    Article  ADS  Google Scholar 

  13. S L Braunstein and H J Kimble, Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  14. K Park and H Jeong, Phys. Rev. A 82, 062325 (2010)

    Article  ADS  Google Scholar 

  15. S W Lee and H Jeong, Phys. Rev. A 87, 022326 (2013)

    Article  ADS  Google Scholar 

  16. O Morin, J D Bancal, M Ho, P Sekatski, V D’Auria, N Gisin, J Laurat and N Sangouard, Phys. Rev. Lett. 110, 130401 (2013)

    Article  ADS  Google Scholar 

  17. A Furusawa and P van Loock, Quantum teleportation and entanglement: A hybrid approach to optical quantum information processing (Wiley-VCH, Weinheim, 2011)

    Book  Google Scholar 

  18. K Nemoto and W J Munro, Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  19. W J Munro, K Nemoto and T P Spiller, New J. Phys. 7, 137 (2005)

    Article  ADS  Google Scholar 

  20. H Jeong, Phys. Rev. A 72, 034305 (2005)

    Article  ADS  Google Scholar 

  21. H Jeong, Phys. Rev. A 73, 052320 (2006)

    Article  ADS  Google Scholar 

  22. P van Loock, W J Munro, K Nemoto, T P Spiller, T D Ladd, S L Braunstein and G J Milb, Phys. Rev. A 78, 022303 (2008)

    Article  ADS  Google Scholar 

  23. P van Loock, Laser Photon. Rev. 5, 167 (2011)

    Article  ADS  Google Scholar 

  24. O Morin, K Huang, J Liu, H L Jeannic, C Fabre and J Laurat, Nat. Photon. 8, 570 (2014)

    Article  ADS  Google Scholar 

  25. H Jeong, A Zavatta, M Kang, S W Lee, L S Costanzo, S Grandi, C Ralph and M Bellini, Nat. Photon. 8, 564 (2014)

    Article  ADS  Google Scholar 

  26. L S Costanzo, A Zavatta, S Grandi, M Bellini, H Jeong, M Kang, S W Lee and T C Ralph, Phys. Scr. 90, 074045 (2015)

    Article  ADS  Google Scholar 

  27. W Son, M S Kim, L Lee and D Ahn, J. Mod. Opt. 49, 1739 (2002)

    Article  ADS  Google Scholar 

  28. M Paternostro, W Son and M S Kim, Phys. Rev. Lett. 92, 197901 (2004)

    Article  ADS  Google Scholar 

  29. U L Andersen, J S Neergaard-Nielsen, P van Loock and A Furusawa, Nat. Phys. 11, 713 (2015)

    Article  Google Scholar 

  30. J Eisert, S Scheel and M B Plenio, Phys. Rev. Lett. 89, 137903 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  31. P Park, S W Lee and H Jeong, Phys. Rev. A 86, 062301 (2012)

    Article  ADS  Google Scholar 

  32. T C Ralph, A P Lund and H M Wiseman, J. Opt. B: Quantum Semiclass. Opt. 7, S245 (2005)

    Article  ADS  Google Scholar 

  33. H Jeong, S L Bae and S Choi, Quant. Inf. Process. 15, 913 (2016)

    Article  ADS  Google Scholar 

  34. W H Louisell, Quantum statistical properties of radiation (Wiley, New York, 1997)

    MATH  Google Scholar 

  35. A P Lund and T C Ralph, Phys. Rev. A 66, 032307 (2002)

    Article  ADS  Google Scholar 

  36. H Jeong and M S Kim, Phys. Rev. A 65, 042305 (2002)

    Article  ADS  Google Scholar 

  37. N B An, K Kim and J Kim, Phys. Lett. A 375, 245 (2011)

    Article  ADS  Google Scholar 

  38. N Horiuchi, Nat. Photon. 11, 532 (2017)

    Article  Google Scholar 

  39. K Zyczkowski and H J Sommers, J. Phys. A 34, 7111 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  40. D Drahi, D V Sychev, K K Pirov, E A Sazhina, V A Novikov, I A Walmsley and A I Lvovsky, Quantum 5, 416 (2021)

  41. A Karlsson and M Bourennane, Phys. Rev. A 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  42. N B An, Phys. Rev. A 68, 022321 (2003)

    Article  ADS  Google Scholar 

  43. D V Sychev, A E Ulanov, A A Pushkina, M W Richards, I A Fedorov and A I Lvovsky, Nat. Photon. 11, 379 (2017)

    Article  ADS  Google Scholar 

  44. E V Mikheev, A S Pugin, D A Kuts, S A Podoshvedov and N B An, Sci. Rep. 9, 14301 (2019)

    Article  ADS  Google Scholar 

  45. D AKuts, S A Podoshvedov and N B An, arXiv:2105.11257

Download references

Acknowledgements

Cao Thi Bich was funded by Vingroup Joint Stock Company and supported by the Domestic Master/Ph.D. Scholarship Programme of Vingroup Innovation Foundation (VINIF), Vingroup Big Data Institute (VINBIGDATA), code VINIF.2020.TS.49.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bich, C.T., An, N.B. Teleporting DV qubit to CV qubit and vice versa via DV-CV hybrid entanglement across lossy environment supervised simultaneously by both DV and CV controllers. Pramana - J Phys 96, 33 (2022). https://doi.org/10.1007/s12043-021-02277-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02277-9

Keywords

PACS Nos

Navigation