Skip to main content
Log in

Random transverse single-ion anisotropies in the mixed spin-1 and spin-1/2 Blume–Capel quantum model: Mean-field theory calculations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We have used mean-field theory based on the Bogoliubov inequality for the free energy to study the effects of random transverse single-ion anisotropies and magnetic field on the mixed spin-1 and spin-1/2 Blume–Capel quantum model with the coordination number \(z=3\). The interactions of the transverse crystal fields \(D_x\) and \(D_y\) act only on the spin-1 sites and are randomly active with probability p and q and inactive with probability 1−p and 1−q respectively. The thermal behaviours of the order parameters are studied to determine the nature of phase transitions and to calculate the phase diagrams on the \((\varphi _x=D_{x}/J z, k_{\mathrm {B}}T/J)\), \((p, k_{\mathrm {B}}T/J)\) and \((q, k_{\mathrm {B}}T/J)\) planes. It is found that the model exhibits only second-order phase transitions. The compensation temperatures are also observed and their lines, \(T_{\mathrm {comp}}\)-lines, are depicted on the \((\varphi _x,k_{\mathrm {B}}T/J)\) planes. The hysteresis loops are obtained by introducing an external magnetic field on the system which reveals that the coercive field decreases with temperature and with positive values of \(\varphi _x\) and \(\varphi _y\). It is also found that remanent magnetisation increases with negative values of \(\varphi _x\) and \(\varphi _y\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S Ferlay, T Mallah, R Ouahès, P Veillet and M Verdaguer, Nature 378, 701 (1995)

    Article  ADS  Google Scholar 

  2. D Gatteschi, O Kahn, J S Miller and F Palacio (eds.), Magnetic molecular materials (Kluver Academic Publishers, Dordrecht, 1991)

    Google Scholar 

  3. O Kahn, Molecular magnetism (VCH, New York, 1993)

    Google Scholar 

  4. J S Miller and M Drillon (eds.), Magnetism: Molecules to materials V (Wiley-VCH, Weinheim, 2005)

    Google Scholar 

  5. R M White, Science 229, 11 (1985)

    Article  ADS  Google Scholar 

  6. R Wood, Understanding magnetism (Tab Books Inc, Blue Ridge Summit, PA, 1988)

    Google Scholar 

  7. E Köster, J. Magn. Magn. Mater. 120, 1 (1993)

  8. L B Lueck and R G Gilson, J. Magn. Magn. Mater. 88, 227 (1990)

    Article  ADS  Google Scholar 

  9. M Mansuripur, J. Appl. Phys. 61, 1580 (1987)

    Article  ADS  Google Scholar 

  10. M Blume, Phys. Rev. 141, 517 (1966)

    Article  ADS  Google Scholar 

  11. H W Capel, Physica 32, 966 (1966)

    Article  ADS  Google Scholar 

  12. W Jiang, G B Xiao, G Z Wei, A Du and Q Zhang, Commun. Theor. Phys. 41, 131 (2004)

    Article  ADS  Google Scholar 

  13. Y Belmamoun and M Kerouad, Phys. Scr. 77, 025706 (2008)

  14. M Boughrara and M Kerouad, Physica A 374, 669 (2007)

    Article  ADS  Google Scholar 

  15. K Htoutou, A Ainane and M Saber, J. Magn. Magn. Mater. 269, 245 (2004)

  16. W Jiang, G Z Wei and A Du, J. Magn. Magn. Mater. 250, 49 (2002)

  17. C Q Xu and S L Yan, J. Magn. Magn. Mater. 416, 48 (2016)

    Article  ADS  Google Scholar 

  18. C Q Xu and S L Yan, J. Magn. Magn. Mater. 345, 261 (2013)

    Article  ADS  Google Scholar 

  19. H Wu, G Wei, P Zhang, G Yi and W Gong, J. Magn. Magn. Mater. 322, 3502 (2010)

    Article  ADS  Google Scholar 

  20. L čanová, J Strečka and T Lučivjanský, Condens. Matter Phys. 12, 353 (2009)

  21. J Strečka and M Jašččur, Phys. Rev. B 70, 014404 (2004)

  22. J Strečka and M Jašččur, Physica A 358, 393 (2005)

    Article  ADS  Google Scholar 

  23. J Strečka and M Jašččur, Condens. Matter Phys. 8, 869 (2005)

    Article  Google Scholar 

  24. W Jiang and G Z Wei, Physica B 250, 236 (2005)

    Article  ADS  Google Scholar 

  25. E Albayrak, Chin. Phys. Lett. 35, 037501 (2018)

  26. C M Salgado, N L de Carvalho, P H Z de Arruda, M Godoy, A S de Arruda, E Costabile and J R de Sousa, Physica A 522, 18 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. I J Souza, M Godoy, A S de Arruda and T M Tunes, Eur. Phys. J. B 93, 215 (2020)

    Article  ADS  Google Scholar 

  28. Y J Chen, S Hossain, L Miloslavsky, Y Liu, C Chien, Z P Shi, M S Miller and H C Tong, IEEE Trans. Magn. 36, 3476 (2000)

    Article  ADS  Google Scholar 

  29. N X Sun and S X Wang, IEEE Trans. Magn. 36, 2506 (2000)

    Article  ADS  Google Scholar 

  30. T Nozawa, N Nouchi and F Morimoto, IEEE Trans. Magn. 37, 3033 (2001)

    Article  ADS  Google Scholar 

  31. H B Nie, C K Ong, J P Wang and Z W Li, J. Appl. Phys. 93, 7252 (2003)

    Article  ADS  Google Scholar 

  32. M L Néel, Ann. Phys. 12, 137 (1948)

    Article  Google Scholar 

  33. M Karimou, R A Yessoufou, A Kpadonou, T Oke and F Hontinfinde, Condens. Matter Phys. 19, 33003 (2016)

    Article  Google Scholar 

  34. K M Hadey and F A Hasan, J. Supercond. Nov. Magn. 32, 3971 (2019)

    Article  Google Scholar 

  35. E Albayrak and M Keskin, J. Magn. Magn. Mater. 261, 203 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Albayrak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seto, G., Yessoufou, R.A.A., Kpadonou, A. et al. Random transverse single-ion anisotropies in the mixed spin-1 and spin-1/2 Blume–Capel quantum model: Mean-field theory calculations. Pramana - J Phys 96, 25 (2022). https://doi.org/10.1007/s12043-021-02268-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02268-w

Keywords

PACS Nos

Navigation