Skip to main content
Log in

Treatment of hadronic systems involving two potentials under a new approximation scheme

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this work, exact analytical expressions for regular solution and on-shell Jost function are calculated for nuclear Hulthén plus atomic Hulthén potential by imposing the same range approximation to both nuclear and atomic potentials. In this context, the regular solution is utilised to find expressions for the off-shell Jost function and half-shell T-matrix. The half-off-shell T-matrix and the elastic scattering phase shifts for the nucleon–nucleon and nucleus–nucleus systems are computed. Our results are found to be in good agreement with the standard data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J Bhoi and U Laha, Theor. Math. Phys. 190, 69 (2017)

    Article  Google Scholar 

  2. J Bhoi and U Laha, Pramana – J. Phys. 88, 42 (2017)

    Google Scholar 

  3. Y Yamaguchi, Phys. Rev. 95, 1628 (1954)

    Article  ADS  Google Scholar 

  4. D K Ghosh, S Saha, K Niyogi and B Talukdar, Czech. J. Phys. 33, 528 (1983)

    Article  ADS  Google Scholar 

  5. H van Haeringen, Charged particle interactions – Theory and formulas (Coulomb Press, Leiden, Netherlands, 1985)

    Google Scholar 

  6. U Laha and J Bhoi, Hadron–hadron scattering within the separable model of interactions (OmniScriptum Publishing Group, Beau Bassin, 2018)

    Google Scholar 

  7. H van Haeringen and R van Wageningen, J. Math. Phys. 16, 1441 (1975)

    Article  ADS  Google Scholar 

  8. W Schweiger, W Plessas, L P Kok and H van Haeringen, Phys. Rev. C 27, 515 (1983)

    Article  ADS  Google Scholar 

  9. J Haidenbauer and W Plessas, Phys. Rev. C 27, 63 (1983)

    Article  ADS  Google Scholar 

  10. B Talukdar, U Laha and T Sasakawa, J. Math. Phys. 27, 2080 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  11. W Glöckle, J Golak, R Skibiński and H Witała, Few-Body Syst. 47, 3 (2010)

  12. T Takemiya, Prog. Theor. Phys. 48, 1547 (1972)

    Article  ADS  Google Scholar 

  13. M Jetter’, H Freitag and H V von Geramb, Phys. Scr. 48, 229 (1993)

    Article  ADS  Google Scholar 

  14. H J Korsch and R Mohlenkamp, J. Phys. B: At. Mol. Phys. 15, 2187 (1982)

    Article  ADS  Google Scholar 

  15. H S Picker, E F Redish and G J Stephenson Jr, Phys. Rev. C 4, 287 (1971)

    Article  ADS  Google Scholar 

  16. P U Sauer, Ann. Phys. 80, 282 (1973)

    Article  ADS  Google Scholar 

  17. U Laha and J Bhoi, Few-Body Syst. 54, 1973 (2013)

    Article  ADS  Google Scholar 

  18. U Laha and J Bhoi, J. Math. Phys. 54, 013514 (2013)

  19. U Laha and J Bhoi, Phys. Rev. C 88, 064001 (2013)

    Article  ADS  Google Scholar 

  20. L Hulthén, Ark. Mat. Astron. Fys. 29B, 1 (1942)

    MathSciNet  Google Scholar 

  21. L J Slater, Generalized hypergeometric functions (Cambridge University Press, London, 1966)

    MATH  Google Scholar 

  22. A Erdeyli, Higher transcendental functions (McGraw-Hill, New York, 1953) Vol. 1

    Google Scholar 

  23. W Magnus and F Oberhettinger, Formulae and theorems for the special functions of mathematical physics (Chelsea, New York, 1949)

    MATH  Google Scholar 

  24. R G Newton, Scattering theory of waves and particles, 2nd edn (McGraw-Hill, New York, 1982)

    Book  Google Scholar 

  25. B Khirali, A K Behera, J Bhoi and U Laha, J. Phys G: Nucl. and Part. 46, 115104 (2019)

    Article  ADS  Google Scholar 

  26. R Jost, Helv. Phys. Acta 20, 256 (1947)

    Google Scholar 

  27. U Laha and B Talukdar, Pramana – J. Phys. 36, 289 (1991)

    Google Scholar 

  28. B Khirali, A K Behera, J Bhoi and U Laha, Phys. Scr. 95, 075308 (2020)

    Article  ADS  Google Scholar 

  29. A W Babister, Transcendental functions satisfying non-homogeneous linear differential equations (MacMillan, New York, 1967)

    MATH  Google Scholar 

  30. I S Gradshteyn and I M Ryzhik, Tables of integrals, series and products (Academic Press, London, 2000)

    MATH  Google Scholar 

  31. B Khirali, U Laha and P Sahoo, Few-Body Syst. 62, 20 (2021)

    Article  ADS  Google Scholar 

  32. R B Wiringa, V G J Stoks and R Schiavilla, Phys. Rev. 51, 38 (1995)

    Article  ADS  Google Scholar 

  33. J Bystricky, C Lechanoine-Leluc and F Lehar, J Phys. 48, 199 (1987)

    Article  Google Scholar 

  34. R Plaga, H W Becker, A Redder, C Rolfs, H P Trautvetter and K Langanke, Nucl. Phys. A 465, 291 (1987)

    Article  ADS  Google Scholar 

  35. A K Behera, U Laha, M Majumder and J Bhoi, J. Kor. Phys. Soc. 74, 428 (2019)

    Article  ADS  Google Scholar 

  36. P Tischhauser et al, Phys. Rev. C 79, 055803 (2009)

    Article  ADS  Google Scholar 

  37. S I Ando, Eur. Phys. J. A 52, 130 (2016)

    Article  ADS  Google Scholar 

  38. S I Ando, Phys. Rev. C 97, 014604 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, P., Laha, U. Treatment of hadronic systems involving two potentials under a new approximation scheme. Pramana - J Phys 96, 15 (2022). https://doi.org/10.1007/s12043-021-02267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02267-x

Keywords

PACS Nos

Navigation