Skip to main content

Advertisement

Log in

Plasmon excitation in \(\hbox {MoS}_{2}/\)graphene van der waals heterostructures

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We have carried out a study of collective excitations for \(\hbox {MoS}_{2}/\)graphene van der Waals heterostructures (vdWHs) using time-dependent density function theory (TDDFT). The resonance absorption spectra of the structures were analysed to determine the polarisation direction in the X-, Y- and Z-axes. We found that the resonance intensities in \(\hbox {MoS}_{2}/\)graphene structures were larger than the bilayer graphene structures in high-energy resonance, and the resonance peak of the graphene\(/\) \(\hbox {MoS}_{2}/\)graphene heterostructure almost annihilated at the low-energy resonance band became broadened at the high-energy resonance band. We studied Fourier-induced charge density of \(\hbox {MoS}_{2}/\)graphene structures and found that they have dipole-like characteristics in the low-energy region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva and A A Firsov, Science 306, 666 (2004)

  2. B Radisavljevic, A Radenovic, J Brivio, V Giacometti and A Kis, Nat. Nanotechnol6, 147 (2011)

    Article  ADS  Google Scholar 

  3. K F Mak, C Lee, J Hone, J Shan and T F Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  4. A Splendiani, L Sun, Y Zhang, T Li, J Kim, C-Y Chim, G Galli and F Wang, Nano Lett10, 1271 (2010)

    Article  ADS  Google Scholar 

  5. S Tongay, J Zhou, C Ataca, K Lo, T S Matthews, J Li, J C Grossman and J Wu, Nano Lett12, 5576 (2012)

    Article  ADS  Google Scholar 

  6. H Zeng, J Dai, W Yao, D Xiao and X Cui, Nat. Nanotechnol7, 490 (2012)

    Article  ADS  Google Scholar 

  7. Q H Wang, K Kalantar-Zadeh, A Kis, J N Coleman and M S Strano, Nat. Nanotechnol7, 699 (2012)

    Article  ADS  Google Scholar 

  8. M Jablan, H Buljan and M Soljacic, Phys. Rev. B 80, 245 (2009)

    Article  Google Scholar 

  9. F H L Koppens, D E Chang and F J G de Abajo, Nano Lett.  11, 3370 (2011)

    Article  ADS  Google Scholar 

  10. H A Atwater, Sci. Am29, 56 (2007)

    Google Scholar 

  11. E Ozbay, Science 311, 189 (2006)

    Article  ADS  Google Scholar 

  12. A Boltasseva and H A Atwater, Science 331, 290 (2011)

    Article  ADS  Google Scholar 

  13. H-F Yin and H Zhang, J. Appl. Phys. 111, 103502 (2012)

    Article  ADS  Google Scholar 

  14. X Shu, H Zhang, X Cheng and Y Miyamoto, Plasmonics 12, 1967 (2017)

  15. M Pisarra, A Sindona, M Gravina, V M Silkin and J M Pitarke, Phys. Rev. B 93, 035440 (2016)

    Article  ADS  Google Scholar 

  16. K F Mak, C Lee, J Hone, J Shan and T F Heinz, Phys. Lett. 105, 136805 (2010)

    Article  Google Scholar 

  17. X Xu, W Yao, D Xiao and T F Heinz, Nat. Phys. 10, 343 (2014)

    Article  Google Scholar 

  18. H Fang, M Tosun, G Seol, T C Chang, K Takei and A Javey, Nano Lett. 13, 1991 (2013)

  19. Y Yoon, K Ganapathi and S Salahuddin, Nano Lett. 11, 3768 (2011)

    Article  ADS  Google Scholar 

  20. A Scholz, T Stauber and J Schliemann, Phys. Rev. B 88, 035135 (2013)

    Article  ADS  Google Scholar 

  21. K Andersen and K S Thygesen, Phys. Rev. B 88, 155128 (2013)

    Article  ADS  Google Scholar 

  22. K Andersen, K W Jacobsen and K S Thygesen, Phys. Rev. B 90, 161410 (2014)

    Article  ADS  Google Scholar 

  23. W Xia, L Dai, P Yu, X Tong, W Song, G Zhang and Z Wang, Nanoscale 9, 4324 (2017)

    Article  Google Scholar 

  24. L Viti, J Hu, D Coquillat, A Politano, C Consejo, W Knap and M S Vitiello, Adv. Mater. 28, 7390 (2016)

    Article  Google Scholar 

  25. C R Dean, A F Young, I Meric, C Lee, L Wang, S Sorgenfrei, K Watanabe, T Taniguchi, P Kim, K L Shepard and J Hone, Nat. Nanotechnol. 5, 722 (2010)

  26. W J Yu, Z Li, H Zhou, Y Chen, Y Wang, Y Huang and X Duan, Nat. Mater. 12, 246 (2013)

    Article  ADS  Google Scholar 

  27. X Cui, G H Lee, Y D Kim, G Arefe, P Y Huang and C H Lee, D A Chenet, X Zhang, L Wang and F Ye, Nat. Nanotechnol. 10, 534 (2015)

    Article  ADS  Google Scholar 

  28. C-P Lu, G Li, K Watanabe, T Taniguchi and E Y Andrei, Phys. Rev. Lett113, 156804 (2014)

    Article  ADS  Google Scholar 

  29. A S Mayorov, R V Gorbachev, S V Morozov, L Britnell, R Jalil, L A Ponomarenko, P Blake, K S Novoselov, K Watanabe, T Taniguchi and A K Geim, Nano Lett11, 2396 (2011)

    Article  ADS  Google Scholar 

  30. L Wang, I Meric, P Y Huang, Q Gao, Y Gao, H Tran, T Taniguchi, K Watanabe, L M Campos, D A Muller, J Guo, P Kim, J Hone, K L Shepard and C R Dean, Science 342, 614 (2013)

    Article  ADS  Google Scholar 

  31. D Bandurin, I Torre, R K Kumar, M Ben Shalom, A Tomadin, A Principi, G H Auton, E Khestanova, K S Novoselov, I V Grigorieva, L A Ponomarenko, A K Geim and M Polini, Science 351, 1055 (2016)

  32. A G Marinopoulos, L Reining, V Olevano, A Rubio, T Pichler, X Liu, M Knupfer and J Fink, Phys. Rev. Lett. 89, 076402 (2002)

    Article  ADS  Google Scholar 

  33. A G Marinopoulos, L Reining, A Rubio and N Vast, Phys. Rev. Lett. 91, 046402 (2003)

    Article  ADS  Google Scholar 

  34. J Yan, Z Yuan and S Gao, Phys. Rev. Lett. 98, 216602 (2007)

    Article  ADS  Google Scholar 

  35. J Yan and S Gao, Phys. Rev. B 78, 235413 (2008)

    Article  ADS  Google Scholar 

  36. E Runge and E K U Gross, Phys. Rev. Lett52, 997 (1984)

    Article  ADS  Google Scholar 

  37. M A L Marques and E K U Gross, Annu. Rev. Phys. Chem. 55, 427 (2004)

    Article  ADS  Google Scholar 

  38. M A L Marques, A Castro, G F Bertsch and A Rubio, Comput. Phys. Commun. 151, 60 (2003)

  39. J P Perdew, K Burke and M Ernzerhof, Phys. Rev. Lett77, 3865 (1996)

    Article  ADS  Google Scholar 

  40. P Perdew, K Burke and M Ernzerhof, Phys. Rev. Lett78, 1396 (1997)

    Article  ADS  Google Scholar 

  41. E G Mishchenko, A V Shytov and P G Silvestrov, Phys. Rev. Lett. 104, 156806 (2010)

    Article  ADS  Google Scholar 

  42. R Liu, B Liao, X Guo, D Hu, H Hu, L Du, H Yu, G Zhang, X Yang and Q Dai, Nanoscale 9, 208 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos 11647091 and U1604131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan-Dan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, DD., Zhang, ZY., Guo, P. et al. Plasmon excitation in \(\hbox {MoS}_{2}/\)graphene van der waals heterostructures. Pramana - J Phys 96, 10 (2022). https://doi.org/10.1007/s12043-021-02258-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02258-y

Keywords

PACS Nos

Navigation