Skip to main content
Log in

A combined Glauber model plus relativistic Hartree–Bogoliubov theory analysis of nuclear reactions with light and medium mass nuclei

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the present work, we have performed systematic studies of nuclear reactions of various light and medium mass nuclei (He, Li, Be, B, C, Ca, Ni, Zr and Sn isotopes) on \(^{12}\)C and proton targets mainly at high energies using Glauber model and a comparison of the results with available experimental data is made. The microscopic nuclear densities needed for these calculations have been obtained using relativistic Hartree–Bogoliubov formalism. In addition, other ground-state bulk properties are also calculated and compared with the available experimental data. It has been observed that the results obtained using the relativistic framework with the density-dependent meson exchange (DD-ME2) parameter set are in better agreement with the experimental data than with the density-dependent point coupling (DD-PC1) results. Also, we have seen that the total reaction cross-section increases with the increase of the projectile mass. The differential elastic scattering cross-section results obtained with both parameter sets are almost identical at low scattering angles and compare well with the experimental data. However, at higher scattering angles, they show significant differences from the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I Tanihata, J. Phys. G: Nucl. Part. Phys. 22, 157 (1996)

    Article  ADS  Google Scholar 

  2. P Arumugam, B K Sharma, P K Sahu, S K Patra, T Sil, M Centelles and X Vinas, Phys. Lett. B 601, 51 (2004)

    Article  ADS  Google Scholar 

  3. A Shukla, S Aberg and S K Patra, J. Phys. G: Nucl. Part. Phys. 38, 095103 (2011)

  4. P G Hansen and B Jonson, Europhys. Lett. 4, 409 (1987)

    Article  ADS  Google Scholar 

  5. A Ozawa, T Suzuki and I Tanihata, Nucl. Phys. A 693, 32 (2001)

    Article  ADS  Google Scholar 

  6. X-X Sun, J Zhao and S-G Zhou, Phys. Lett. B 785, 530 (2018)

  7. A J Miller et al, Nature Phys. 15, 432 (2019)

    Article  ADS  Google Scholar 

  8. V Morcelle et al, Phys. Rev. C 89, 044611 (2014)

    Article  ADS  Google Scholar 

  9. I Tanihata et al, Phys. Lett. B 287, 307 (1992)

    Article  ADS  Google Scholar 

  10. Y Togano et al, Phys. Lett. B 761, 412 (2016)

    Article  ADS  Google Scholar 

  11. K Tanaka et al, Phys. Rev. Lett. 104, 062701 (2010)

    Article  ADS  Google Scholar 

  12. W Horiuchi, Y Suzuki, B Abu-Ibrahim and A Kohama, Phys. Rev. C 75, 044607 (2007)

    Article  ADS  Google Scholar 

  13. A Ozawa et al, Phys. Rev. Lett. 84, 24 (2000)

    Article  Google Scholar 

  14. A N Antonov, M K Gaidarov, D N Kadrev, P E Hodgson and E Moya de Guerra, Int. J. Mod. Phys. E 13, 759 (2004)

    Article  ADS  Google Scholar 

  15. A N Antonov, D N Kadrev, M K Gaidarov, E M de Guerra, P Sarriguren, J M Udias, V K Lukyanov, E V Zemlyanaya and G Z Krumova, Phys. Rev. C 72, 044307 (2005)

  16. K Varga, S C Pieper, Y Suzuki and R B Wiringa, Phys. Rev. C 66, 034611 (2002)

    Article  ADS  Google Scholar 

  17. B Abu-Ibrahim, Y Ogawa, Y Suzuki and I Tanihata, Comput. Phys. Commun. 151, 369 (2003)

    Article  ADS  Google Scholar 

  18. G F Bertsch, H Esbensen and A Sustich, Phys. Rev. C 42, 758 (1990)

    Article  ADS  Google Scholar 

  19. K Yabana, Y Ogawa and Y Suzuki, Phys. Rev. C 45, 2909 (1992)

    Article  ADS  Google Scholar 

  20. A Bhagwat and Y K Gambhir, Phys. Rev. C 69, 014315 (2004); A Bhagwat, Y K Gambhir and S H Patil, Eur. Phys. J. A 8, 511 (2000)

  21. B. K Sharma, S K Patra, Raj K Gupta, A Shukla, P Arumugam, P D Stevenson and Walter Greiner, J. Phys. G: Nucl. Part. Phys. 32, 2089 (2006)

    Article  Google Scholar 

  22. A Shukla, S Aberg and A Bajpeyi, J. Phys. G: Nucl. Part. Phys. 44, 025104 (2017)

    Article  ADS  Google Scholar 

  23. T Niksic, D Vretenar, P Finelli and P Ring, Phys. Rev. C 66, 024306 (2002)

    Article  ADS  Google Scholar 

  24. F Hofmann, C M Keil and H Lenske, Phys. Rev. C 64, 034314 (2001)

    Article  ADS  Google Scholar 

  25. S Typel and H H Wolter, Nucl. Phys. A 656, 331 (1999)

    Article  ADS  Google Scholar 

  26. F de Jong and H Lenske, Phys. Rev. C 57, 3099 (1998)

  27. T Niksic, D Vretenar and P Ring, Phys. Rev. C 78, 034318 (2008)

    Article  ADS  Google Scholar 

  28. P Ring, Prog. Part. Nucl. Phys. 37, 193 (1996)

    Article  ADS  Google Scholar 

  29. Y Tian, Z Y Ma and P Ring, Phys. Lett. B 676, 44 (2009)

    Article  ADS  Google Scholar 

  30. R J Glauber, Phys. Rev. 100, 242 (1955)

    Article  ADS  Google Scholar 

  31. R J Glauber, Lectures in theoretical physics edited by W E Brittin and L G Dunham (Interscience, New York, 1959), Vol. 1, p. 315

  32. R N Panda, M Panigrahi, Mahesh K Sharma and S K Patra, Phys. Atom. Nucl. 81, 417 (2018)

    Article  ADS  Google Scholar 

  33. B Abu-Ibrahim, K Fujimura and Y Suzuki, Nucl. Phys. A 657, 391 (1999)

    Article  ADS  Google Scholar 

  34. J Chauvin, D Lubrun, A Lounis and M Buenerd, Phys. Rev. C 28, 1970 (1983)

    Article  ADS  Google Scholar 

  35. M Buenerd, A Lounis, J Chauvin, D Lebrun, P Martin, G Duhamel, J C Gondrand and P D Saintignon, Nucl. Phys. A 424, 313 (1984)

    Article  ADS  Google Scholar 

  36. P Shukla, Phys. Rev. C 67, 054607 (2003)

    Article  ADS  Google Scholar 

  37. A Bhagwat and Y K Gambhir, Phys. Rev. C 77, 027602 (2008); ibid. 68, 044301(2003)

  38. I Sick, Nucl. Phys. A 218, 509 (1974)

    Article  ADS  Google Scholar 

  39. X Liu, P Egelhof, O Kiselev and M Mutterer, Phys. Lett. B 809, 135776 (2020)

    Article  Google Scholar 

  40. P J Karol, Phys. Rev. C 11, 1203 (1975)

    Article  ADS  Google Scholar 

  41. A Shukla, B K Sharma, R Chandra, P Arumugam and S K Patra, Phys. Rev. C 76, 034601 (2007)

    Article  ADS  Google Scholar 

  42. H L Bradt and B Peters, Phys. Rev. 77, 54 (1950)

    Article  ADS  Google Scholar 

  43. S Kox et al, Nucl. Phys. A 420, 162 (1984)

    Article  ADS  Google Scholar 

  44. S Kox et al, Phys. Rev. C 159, 15 (1985)

    Google Scholar 

  45. S Kox et al, Phys. Rev. C 35, 1678 (1987)

    Article  ADS  Google Scholar 

  46. Geant4 Physics Reference Manual

  47. L W Townsend and J W Wilson, Phys. Rev. C 37, 892 (1988)

    Article  ADS  Google Scholar 

  48. W Q Shen, B Wang, J Feng, W L Zhan, Y T Zhu and E P Feng, Nucl. Phys. A 491, 130 (1989)

    Article  ADS  Google Scholar 

  49. L Sihver, C H Tsao, R Silberberg, T Kanai and A F Barghouty, Phys. Rev. C 47, 1225 (1993)

    Article  ADS  Google Scholar 

  50. R K Tripathi, F A Cucinotta and J W Wilson, Nucl. Instrum. Methods B 155, 349 (1999)

    Article  ADS  Google Scholar 

  51. K Iida, A Kohama and K Oyamatsu, J. Phys. Soc. Jpn. 76, 044201 (2007)

  52. L Sihver, M Lantz and A Kohama, Phys. Rev. C 89, 067602 (2014)

    Article  ADS  Google Scholar 

  53. R K Tripathi, F A Cucinotta and J W Wilson, Nucl. Instrum. Methods B 117, 347 (1996)

    Article  ADS  Google Scholar 

  54. H P Wellisch and D Axen, Phys. Rev. C 54, 1329 (1996)

    Article  ADS  Google Scholar 

  55. http://www.nndc.bnl.gov/masses/

  56. G Audi, A H Wapstra and C Thibault, Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  57. S K Patra and C R Praharaj, Phys. Rev. C 44, 2552 (1991)

    Article  ADS  Google Scholar 

  58. I Angeli and K P Marinova, At. Data Nucl. Data Tables 99, 69 (2013)

    Article  ADS  Google Scholar 

  59. G Hagen et al, Nature Phys. 12, 186 (2016)

    Article  ADS  Google Scholar 

  60. X Roca-Maza, M Centelles, F Salvat and X Vinas, Phys. Rev. C 78, 044332 (2008)

    Article  ADS  Google Scholar 

  61. J Y Hostachy et al, Nucl. Phys. A 490, 441 (1988); J Chauvin, D Lebrun, A Lounis and M Buenerd, Phys. Rev. C 28, 1970 (1983)

  62. M Fukuda et al, Phys. Lett. B 208, 339 (1991); T Kobayashi et al, Phys Lett. B 232, 51 (1989)

  63. M Takachi et al, Nucl. Phys. A 834, 412c (2010)

    Article  ADS  Google Scholar 

  64. S K Charagi, Phys. Rev. C 48, 452 (1993)

    Article  ADS  Google Scholar 

  65. S K Charagi and S K Gupta, Phys. Rev. C 41, 1610 (1990)

    Article  ADS  Google Scholar 

  66. S K Charagi and S K Gupta, Phys. Rev. C 56, 1171 (1997)

    Article  ADS  Google Scholar 

  67. A Bhagwat and Y K Gambhir, Phys. Rev. C 73, 054601 (2006)

    Article  ADS  Google Scholar 

  68. T Zheng et al, Nucl. Phys. A 709, 103 (2002)

    Article  ADS  Google Scholar 

  69. T Nagahisa and W Horiuchi, Phys. Rev. C 97, 054614 (2018)

    Article  ADS  Google Scholar 

  70. R M De Vries and J C Peng, Phys. Rev. C 22, 1055 (1980)

    Article  ADS  Google Scholar 

  71. W Horiuchi, S Hatakeyama, S Ebata and Y Suzuki, Phys. Rev. C 93, 044611 (2016)

    Article  ADS  Google Scholar 

  72. A Ingemarsson et al, Nucl. Phys. A 653, 341 (1999)

    Article  ADS  Google Scholar 

  73. T Eliyakut-Roshko, R H McCamis, W T H vas Oers, R F Carlson and A J Cox, Phys. Rev. C 51, 1295 (1995)

    Article  ADS  Google Scholar 

  74. V Lapoux et al, Phys. Rev. C 66, 034608 (2002)

    Article  ADS  Google Scholar 

  75. J S Al-Khalili et al, Phys. Lett. B 378, 45 (1996)

    Article  ADS  Google Scholar 

  76. V K Lukyanov, D N Kadrev, E V Zemlyanaya, A N Antonov, K V Lukyanov and M K Gaidarov, Phys. Rev. C 82, 024604 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Ajeet Singh is highly thankful to the Council of Scientific and Industrial Research, New Delhi for providing Junior Research Fellowship (JRF) under File No. 09/1088(0005)/2018-EMR-1. M K Gaidarov is grateful for the support of the Bulgarian National Science Fund under Contract No. KP-06-N38/1.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Shukla, A. & Gaidarov, M.K. A combined Glauber model plus relativistic Hartree–Bogoliubov theory analysis of nuclear reactions with light and medium mass nuclei. Pramana - J Phys 96, 8 (2022). https://doi.org/10.1007/s12043-021-02251-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02251-5

Keywords

PACS

Navigation