Skip to main content
Log in

Impact of global financial crisis on the complexity of emerging markets: Case study of the Nigerian Stock Exchange

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The dynamical complexities of the Nigerian stock market have been largely uninvestigated. In this study, we analysed the return price of financial stocks on Nigerian Stock Exchange for chaotic behaviour. Our analysis was conducted for the period 2000–2015, as well as for three distinct periods covering the pre-crisis, crisis and post-crisis period of 2008. Fractal anlaysis (detrended fluctuation analysis and rescale range), entropy (Kolmogorov and permutation), recurrence quantification analysis (determinism and longest diagonal line) and Lyapunov exponent (Rosenstein and Eckmann) methods were used in the investigation. Results showed that the return prices of six financial stocks exhibit behaviour associated with random noise and chaos. The stocks were found to be more efficient post-crisis than during the pre-crisis period. Return prices post-crisis were found to be more chaotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. C X Nie, Physica A 473, 632 (2017)

    Article  ADS  Google Scholar 

  2. M A Wey, Chaos 28(11), 113109 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  3. S Lahmiri, Physica A 466, 389 (2017)

    Article  ADS  Google Scholar 

  4. A Das and P Das, Appl. Math. Comput. 185(1), 388 (2007)

    MathSciNet  Google Scholar 

  5. F M Siokis, Physica A 499, 266 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  6. S Lahmiri and S Bekiros, Chaos Solitons Fractals 105, 38 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. K Guhathakurta, B Bhattacharya and A R Chowdhury, Physica A 389(9), 1874 (2010)

    Article  ADS  Google Scholar 

  8. J A Batten, B M Lucey and M Peat, Chaos 28(12), 123109 (2018)

    Article  Google Scholar 

  9. R Kříž, Acta Polytechnica 51(5) (2011)

    Article  Google Scholar 

  10. R Kříž, Int. J. Auto. Comput. 11(3), 231 (2014)

    Article  Google Scholar 

  11. S Lahmiri and S Bekiros, Chaos Solitons Fractals 106, 28 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  12. J He and P Shang, Physica A 482, 772 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. S Lahmiri, G S Uddin and S Bekiros, Chaos Solitons Fractals 103, 342 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. T W Abraham, CBN J. Appl. Stat. 2(1), 61 (2011)

  15. G Giovannetti and M Velucchi, Rev. Dev. Fin. 3, 169 (2013)

    Article  Google Scholar 

  16. I A Fuwape and S T Ogunjo, CBN J. Appl. Stat. 4(2), 129 (2013)

  17. B Fowowe and M Shuaibu, Int. Econ. 148, 59 (2016)

    Article  Google Scholar 

  18. L Krištoufek, Czech. Econ. Rev. 4(3), 315 (2010)

    Google Scholar 

  19. C A S Campos, L S Cantú and Z H Veleros, arXiv preprint arXiv:1903.07809 (2019)

  20. H E Hurst, Trans. Amer. Soc. Civil Eng. 116, 770 (1951)

    Article  Google Scholar 

  21. Y H Shaikh, A R Khan, M I Iqbal, S H Behere and S P Bagare, Fractals 16(03), 259 (2008), https://doi.org/10.1142/S0218348X08004009

  22. I A Fuwape and S T Ogunjo, J. Atmos. Solar-Terrestrial Phys. 150, 61 (2016)

    Article  ADS  Google Scholar 

  23. J P Eckmann and D Ruelle, The theory of chaotic attractors (Springer, 1985) pp. 273–312

  24. C Bandt and B Pompe, Phys. Rev. Lett. 88(17), 174102 (2002)

    Article  ADS  Google Scholar 

  25. X Zeng, R Pielke and R Eykholt, Mod. Phys. Lett. B 6(02), 55 (1992)

    Article  ADS  Google Scholar 

  26. A Wolf, J B Swift, H L Swinney and J A Vastano, Physica D 16(3), 285 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  27. H Kantz, Phys. Lett. A 185(1), 77 (1994)

    Article  ADS  Google Scholar 

  28. A BenSaïda, SoftwareX 3, 1 (2015)

    Article  ADS  Google Scholar 

  29. J P Eckmann, S O Kamphorst, D Ruelle and S Ciliberto, Phys. Rev. A 34(6), 4971 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  30. M Sano and Y Sawada, Phys. Rev. Lett. 55(10), 1082 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  31. M T Rosenstein, J J Collins and C J De Luca, Physica D 65(1–2), 117 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  32. A Karantonis and M Pagitsas, Phys. Rev. E 53(5), 5428 (1996)

    Article  ADS  Google Scholar 

  33. J Eckmann, S O Kamphorst and D Ruelle, World Scientific Series on Nonlinear Science Series A 16, 441 (1995)

    Article  Google Scholar 

  34. C L Webber Jr and N Marwan, Recurrence quantification analysis, in: Theory and best practices (Springer, 2015)

  35. J P Zbilut and C L Webber Jr, Int. J. Bifurc. Chaos 17(10), 3477 (2007)

    Article  Google Scholar 

  36. H R Mynhadt, A Plastun and I Makarenko, Behavior of financial markets efficiency during the financial market crisis: 2007–2009, Tech. Rep. (University Library of Munich, Germany, 2014)

  37. J Barkoulas and N Travlos, Appl. Fin. Econ 8(3), 231 (1998)

    Article  Google Scholar 

  38. E S Mayfield and B Mizrach, J. Bus. Econ. Stat. 10(3), 367 (1992)

    Google Scholar 

  39. C L Webber and J P Zbilut, Recurrence quantification analysis of nonlinear dynamical systems, in Tutorials in contemporary nonlinear methods for the behavioral sciences edited by M A Riley and G Van Order (National Science Foundation, Arlington, 2005), Chap 2, pp. 26–94, https://www.nsf.gov/sbe/bcs/pac/nmbs

  40. R K Mishra, S Sehgal and N R Bhanumurthy, Rev. Fin. Econ. 20, 96 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S T Ogunjo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogunjo, S.T., Fuwape, I.A. & Temiye, M.O. Impact of global financial crisis on the complexity of emerging markets: Case study of the Nigerian Stock Exchange. Pramana - J Phys 95, 206 (2021). https://doi.org/10.1007/s12043-021-02245-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02245-3

Keywords

PACS Nos

Navigation