Skip to main content
Log in

Exact analysis of electro-osmotic flow of Walters’-B fluid with non-singular kernel

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Applying the electric field to a fluid flowing on an infinite vertical plate is the most recent technique used for studying fluid movement. This technique is known as electro-osmotic flow (EOF). Therefore, the core aim of the present research work is to examine the time-dependent electro-osmotic flow of viscoelastic fluid on a vertical flat plate together with the effects of heat generation and chemical reaction. The classical system of governing equations has been fractionalised by means of Caputo–Fabrizio’s time-fractional derivative. Governing equations have been non-dimensionalised by using relative dimensionless quantities. The exact solutions for the momentum, temperature and concentration equations have been developed by implementing the Laplace transform technique. For graphical analysis, the solutions have been plotted against the inserted parameters using the computational software Mathematica. It is interesting to mention that the time-fractional model provides more than one fluid layer for the analysis of the fluid motion, heat distribution and mass concentration, which is not possible by assuming the classical mathematical model. It is also very important to mention that the velocity profile shows declination for greater values of electro-osmotic parameter Es.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S Noreen, S Waheed, D C Lu and D Tripathi, Int. Commun. Heat Mass Transfers 123, 105180 (2021)

    Article  Google Scholar 

  2. K Ramesh, D Tripathi, M M Bhatti and C M Khalique. J. Mol. Liq. 314, 113568 (2020)

    Article  Google Scholar 

  3. A K Ansu, R K Sharma, V V Tyagi, A Sarı, P Ganesan and D Tripathi, Int. J. Energy Res. 443, 2183 (2020)

    Article  Google Scholar 

  4. N S Akbar, D Tripathi, O A Bégand and Z Khan, Acta Astron. 128, 1 (2016)

    Article  Google Scholar 

  5. D Tripathi, J Prakash, A K Tiwari and R Ellahi, Microvasc. Res. 132, 104065 (2020)

    Article  Google Scholar 

  6. K Walters, Q. J. Mech. Appl. Math. 151, 63 (1962)

    Article  Google Scholar 

  7. M Reiner and D Abir (Eds), Second-order effects in elasticity, plasticity and fluid dynamics, International Symposium (Haifa, Israel, 23–27 April 1962)

  8. A Y Khan and J L Martinez, Energy Convers. Manage. 3910, 1095 (1998)

    Article  Google Scholar 

  9. K Javaherdeh, M M Nejad and M Moslemi, Eng. Sci. Technol. 183, 423 (2015)

  10. A Hussanan, Z Ismail, I Khan, A G Hussein and S Shafie, Eur. Phys. J. Plus 129, 46 (2014)

    Article  Google Scholar 

  11. R Gorenflo and F Mainardi, Fractional calculus, in: Fractals and fractional calculus in continuum mechanics (Springer, Vienna, 1997) pp. 223–276

  12. R Hilfer (Ed), Applications of fractional calculus in physics (World Scientific, 2000)

  13. D Baleanu, Z B Güvenç and J T Machado (Eds), New trends in nanotechnology and fractional calculus applications (Springer, New York, 2010) p. C397

  14. M Dalir and M Bashour, Appl. Math. Sci. 421, 1021 (2010)

    Google Scholar 

  15. R C Koeller, Applications of fractional calculus to the theory of viscocity (1984) pp. 299–307

  16. L Debnath, Int. J. Math. Math. Sci. 541, 3413 (2003)

    Article  Google Scholar 

  17. K A Abro and J F Gómez-Aguilar, Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.6655 (2020)

  18. K A Abro, Phys. Fluids 3212, 123102 (2020)

    Article  ADS  Google Scholar 

  19. A Atangana and J F Gómez-Aguilar, The Eur. Phys. J. Plus 133, 166 (2018)

    Article  Google Scholar 

  20. V Garg and K Singh, Int. J. Adv. Comput. Sci. Appl. 33, 01 (2012)

    Google Scholar 

  21. G Jumarie, Comput. Math. Appl. 519, 1367 (2006)

    Article  MathSciNet  Google Scholar 

  22. M Caputo, Geophys. J. Int. 135, 529 (1967)

    Article  ADS  Google Scholar 

  23. M Caputo and M Fabrizio, Progr. Fract. Diff. Appl. 12, 1 (2015)

    Google Scholar 

  24. K A Abro, A A Memon and M A Uqaili, The Eur. Phys. J. Plus D133, 1 (2018)

    Article  Google Scholar 

  25. K A Abro and J F Gomez-Aguilar, The Eur. Phys. J. Plus 134, 101 (2019)

    Article  Google Scholar 

  26. M A Dokuyucu, E Celik, H Bulut and H M Baskonus, The Eur. Phys. J. Plus 133, 1 (2018)

    Article  Google Scholar 

  27. S Das and S Chakraborty, Anal. Chim. Acta 559, 15 (2006)

    Article  Google Scholar 

  28. C Zhao, E Zholkovskij, J H Masliyah and C Yang, J. Colloid Interface Sci. 326, 503 (2008)

    Article  ADS  Google Scholar 

  29. G Tang, X H Li, X H He and W Tao, Q. J. Non-Newtonian Fluid Mech. 157, 133 (2009)

    Article  Google Scholar 

  30. C Zhao and C Yang, Int. J. Heat Mass Transf. 557, 2044 (2012)

    Article  Google Scholar 

  31. Q S Liu, Y J Jian and L G Yang, J. Non-Newtonian Fluid Mech. 166, 478 (2011)

    Article  Google Scholar 

  32. Q Liu, Y Jian and L Yang, Phys. Fluids 2310, 102001 (2011)

    Article  ADS  Google Scholar 

  33. A U Awan, M Ali and K A Abro, J. Comput. Appl. Math. 376, 112885 (2020)

  34. S Ghosal, J. Fluid Mech. 459, 103 (2002)

    Article  ADS  Google Scholar 

  35. J C Misra, G C Shit, S Chandra and P K Kundu, Appl. Math. Comput 217, 7932 (2011)

  36. C Cameselle and K R Reddy, Electrochim. Acta 86, 10 (2012)

    Article  Google Scholar 

  37. A Casagrande, Boston Soc. Civil Eng. J. 131, 01 (1952)

    Google Scholar 

  38. A Mondal and G C Shit, J. Magn. Magn. Mater. 442, 319 (2017)

    Article  ADS  Google Scholar 

  39. B P Cahill, L J Heyderman, J Gobrecht and A Stemmer, Phys. Rev. E 703, 036305 (2004)

    Article  ADS  Google Scholar 

  40. D Tripathi, A Yadav and O A Bég, The Eur. Phys. J. Plus 132, 1 (2017)

    Article  Google Scholar 

  41. J Escandón, E Jiménez, C Hernández, O Bautista and F Méndez, Eur. J. Mechanics-B/Fluids 531, 180 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia for funding this work through Research Groups Program under Grant Number (R.G.P2./99/41).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunthrayuth, P., Alderremy, A., Aly, S. et al. Exact analysis of electro-osmotic flow of Walters’-B fluid with non-singular kernel. Pramana - J Phys 95, 201 (2021). https://doi.org/10.1007/s12043-021-02224-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02224-8

Keywords

PACS No

Navigation