Skip to main content
Log in

On multiple complex structure formations in expanding hollow cathode discharge

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A hollow cathode source is designed to generate multiple double layer (MDL) structures by the trapping of charged particles in the absence of any auxiliary plasma source or magnetic field, while the glow discharge switches between two distinctly different stable regimes. The generation and dynamics of localised and intensely luminous MDL formations are experimentally investigated in low-frequency sheath oscillation inhibited glow discharge by modified Langmuir probes in a linear vacuum vessel. The localised complex structures grow axially into visibly glowing coaxial formations along with structural changes in MDL formations, on increasing the applied voltage in nitrogen plasma at 0.1 mbar pressure. The discharge gradually expands to fill up the entire vessel through redistribution of energetic charged particles and formation of multiple sheaths on increasing the applied voltage across the electrodes. The present experimental study reveals interesting information about the formation of the sheath, stability of the plasma sheath and charged particle dynamics during the discharge transformations. The paper relates the plasma parameter variations with the nonlinear time series analysis of the discharge current and floating potential fluctuations through the reconstructed phase space in different discharge domains to analyse the dynamics of MDL formations and harmonic generation through sheath oscillations during the hollow cathode discharge regimes. The radial motion of the charged particles during the glow discharge between the semi-transparent gridded cylindrical cathode and the central anode might be useful for a better understanding of the underlying basic sheath physics related to particle acceleration in plasma as well as application in plasma sputtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R L Stenzel, C Ionita and R Schrittwieser, Plasma Sources Sci. Technol. 17, 035006 (2008)

    Article  ADS  Google Scholar 

  2. N Hershkowitz, Space Sci Rev. 41(3), 351(1985)

    ADS  Google Scholar 

  3. S Chakraborty, M K Paul, J N Roy and A Nath, Phys. Plasmas 25, 033518 (2018)

    Article  ADS  Google Scholar 

  4. T Gyergyek, M Čerček, R Schrittwieser and C Ionita, Contrib. Plasma Phys. 42(5), 508 (2002)

    Article  ADS  Google Scholar 

  5. R L Stenzel and J M Urrutia, Phys. Plasmas 19, 082105 (2012)

    Article  ADS  Google Scholar 

  6. R L Stenzel and J M Urrutia, Phys. Plasmas 19, 082107 (2012)

    Article  ADS  Google Scholar 

  7. C Ionita, D G Dimitriu and R W Schrittwieser, Int. J. Mass Spectrometry 233, 343 (2004)

    Article  ADS  Google Scholar 

  8. J C Johnson, N D’Angelo and R L Merlino, J. Phys. D 23, 682 (1990)

    Article  ADS  Google Scholar 

  9. R Armstrong and R Schrittwieser, Plasma Phys. Control. Fusion 33(12), 1407 (1991)

    Article  ADS  Google Scholar 

  10. M C Griskey and R L Stenzel, Phys. Rev. Lett. 82, 556 (1999)

    Article  ADS  Google Scholar 

  11. I B Bernstein, J M Greene and M D Kruska, Phys. Rev. 108, 546 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  12. Y Choueiri, Sci. Am. 300, 58 (2009)

    Article  Google Scholar 

  13. E V Sysoeva, F da Silva, E Z Gusakov, S Heuraux and A Yu Popov, Nucl. Fusion 55, 033016 (2015)

    Article  Google Scholar 

  14. D A Uzdensky and S Rightley, Rep. Prog. Phys. 77, 036902 (2014)

    Article  ADS  Google Scholar 

  15. R L Stenzel, J M Urrutia, C T Teodorescu-Soare, C Ionita and R Schrittwieser, Phys. Plasmas 20, 083503 (2013)

    Article  ADS  Google Scholar 

  16. T Furukawa, K Takizawa, D Kuwahara and S Shinohara, AIP Adv. 7, 115204 (2017)

    Article  ADS  Google Scholar 

  17. J Musil, S Kadlec and W D Münz, J. Vac. Sci. Technol. A 9(3), 1171 (1991)

    Article  ADS  Google Scholar 

  18. C H K Chen, J. Plasma Phys. 82(6), 535820602 (2016)

    Article  Google Scholar 

  19. R L Stenzel and J M Urrutia, Phys. Plasmas 19, 082108 (2012)

    Article  ADS  Google Scholar 

  20. R L Stenzel, J Gruenwald, B Fonda, C Ionita and R Schrittwieser, Phys. Plasmas 18, 012105 (2011)

    Article  ADS  Google Scholar 

  21. R L Stenzel, J Gruenwald, C Ionita and R Schrittwieser, Phys. Plasmas 18, 062112 (2011)

    Article  ADS  Google Scholar 

  22. R L Stenzel, J Gruenwald, C Ionita and R Schrittwieser, Plasma Source. Sci. Technol. 20, 045017 (2011)

    Google Scholar 

  23. C T Teodorescu-Soare, D G Dimitriu, C Ionita and R W Schrittwieser, Phys. Scr. 91, 034002 (2016)

    Article  ADS  Google Scholar 

  24. S Chauhan, M Ranjan, M Bandyopadhyay and S Mukherjee, Phys. Plasmas 23, 123524 (2016)

    Article  ADS  Google Scholar 

  25. S Chauhan, M Ranjan, M Bandyopadhyay and S Mukherjee, Phys. Plasmas 23, 013502 (2016)

    Article  ADS  Google Scholar 

  26. E Ahedo, Plasma Phys. Control. Fusion 53(12), 124037 (2011)

    Article  ADS  Google Scholar 

  27. M K Paul, S Chakraborty and Subhojit Bose, Phys. Plasmas 26, 023516 (2019)

    Article  ADS  Google Scholar 

  28. I D Sudit and F F Chen, Plasma Sources Sci. Technol. 3, 162 (1998)

    Article  ADS  Google Scholar 

  29. M K Paul and D Bora, Pramana – J. Phys. 71, 117 (2008)

    Google Scholar 

  30. R Schrittwieser, C Ionită, P C Balan, C A F Varandas, H F C Figueiredo, J Stöckel, J Adámek, M Hron, J Ryszawy, M Tichý, E Martines, G Van Oost, T Klinger and R Madani, Rom. J. Phys. 50(7–8), 723 (2005)

    Google Scholar 

  31. V A Godyak and B M Alexandrovich, J. Appl. Phys. 118, 233302 (2015)

    Article  ADS  Google Scholar 

  32. L Conde, C F Fontan and J Lambas, Phys. Plasmas 13, 113504 (2006)

    Article  ADS  Google Scholar 

  33. M K Paul, P K Sharma, A Thakur, S V Kulkarni and D Bora, Phys. Plasmas 21, 062112 (2014)

    Article  ADS  Google Scholar 

  34. M K Paul, A Lyssoivan, R Koch, G Van Wassenhove, M Vervier, G Bertschinger, R Laengner, B Unterberg, G Sergienko, V Philipps, T Wauters and The TEXTOR Team, Pramana – J. Phys. 80(1): 121 (2013)

    Article  ADS  Google Scholar 

  35. M K Paul and S Chakraborty, Phys. Plasmas 27, 014704 (2020)

    Article  Google Scholar 

  36. V A Godyak, R B Piejak and M Alexandrovich, Plasma Source Sci. Technol. 1, 36 (1992)

    Google Scholar 

  37. M J Druyvesteyn, Z. Phys. 64, 781 (1930)

  38. M Megalingam, B Sarma, V Mitra, N Hari Prakash and Arun Sarma, Phys. Plasmas 23, 072102 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the SERB-DST, Government of India (Sanction No. SERB/F/3963/2015-16) under the Extra Mural Research (EMR) scheme and (Sanction No. SR/FST/PSI-196/2014) under the FIST programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manash Kumar Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, S., Chakraborty, S., Nath, A. et al. On multiple complex structure formations in expanding hollow cathode discharge. Pramana - J Phys 95, 186 (2021). https://doi.org/10.1007/s12043-021-02223-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02223-9

Keywords

PACS Nos

Navigation