Skip to main content
Log in

Effect of shape of nanoparticles on mixed convection nanofluid flow in a porous medium with variable permeability: Analysis of the second law of thermodynamics

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Second law analysis of copper–water nanofluid flow in an inclined channel filled with a porous medium having variable permeability is presented in the literature. Hydrodynamic slip and convective boundary conditions are assumed for the flow. Nanoparticles of different shapes are considered, namely, platelet, blade, cylinder and brick. The permeability of the porous medium is assumed to decrease exponentially across the width of the channel. The highly non-linear governing equations are solved using the homotopy analysis method and verified with a closed form solution for a reduced equation. Moreover, comparisons with the existing literature are presented, the results of which were found to be in excellent agreement. Impact of pertinent flow parameters influencing the flow on entropy generation, Bejan number, Nusselt number, skin friction and volume flow rate are discussed and supplemented with graphs. Platelet-shaped nanoparticles have generated the least amount of entropy in the study. The impact of channel inclination angle on skin friction was observed to be highly significant in the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. S Choi and J Eastman, ASME Int. Mech. Eng. Congr. Expo. 66, 99 (1995)

    Google Scholar 

  2. S K Das, S U S Choi and H E Patel, Heat Transf. Eng. 27(10), 3 (2006)

    Article  ADS  Google Scholar 

  3. X Q Wang and A S Mujumdar, Int. J. Therm. Sci. 46(1),  1 (2007)

    Article  Google Scholar 

  4. D Wen, G Lin, S Vafaei and K Zhang, Particuology 7(2),  141 (2009)

    Article  Google Scholar 

  5. R Saidur, K Y Leong and H A Mohammad, Renew. Sustain. Energy Rev. 15(3),  1646 (2011)

    Article  Google Scholar 

  6. R L Hamilton and O K Crosser, Ind. Eng. Chem. Fundam. 1,  187 (1962)

    Article  Google Scholar 

  7. E V Timofeeva, J L Routbort and D Singh, J. Appl. Phys. 106(1), (2009)

    Article  Google Scholar 

  8. E H Ooi and V Popov, Int. J. Therm. Sci. 65,  178 (2013)

    Article  Google Scholar 

  9. F Selimefendigil and H F Öztop, J. Mol. Liq. 212,  509 (2015)

    Article  Google Scholar 

  10. Y Lin, B Li, L Zheng and G Chen, Powder Technol. 301,  379 (2016)

    Article  Google Scholar 

  11. I Khan, J. Mol. Liq. 233,  442 (2017)

    Article  Google Scholar 

  12. M Sheikholeslami and S A Shehzad, Int. J. Heat Mass Transf. 115,  180 (2017)

    Article  Google Scholar 

  13. M Sheikholeslami and M Shamlooei, Phys. Lett. Sect. A Gen. At. Solid State Phys. 381(36),  3071 (2017)

    Google Scholar 

  14. U Khan, Adnan, N Ahmed and S T Mohyud-Din, Eur. Phys. J. Plus 132(4), 166 (2017)

  15. M Hamid, M Usman, T Zubair, R U Haq and W Wang, Int. J. Heat Mass Transf. 124,  706 (2018)

    Article  Google Scholar 

  16. M Sheikholeslami, M Shamlooei and R Moradi, Chem. Eng. Process. Process Intensif. 124,  71 (2018)

    Article  Google Scholar 

  17. A Shakiba and A B Rahimi, J. Therm. Anal. Calorim. 138,  501 (2019)

    Article  Google Scholar 

  18. M S Mahmoud and H Deresiewicz, Int. J. Numer. Anal. Methods Geomech. 4(1),  57 (1980)

    Article  Google Scholar 

  19. I A Hassanien, Appl. Math. Comput. 138(1),  41 (2003)

    MathSciNet  Google Scholar 

  20. R C Chaudhary and P K Sharma, J. Zhejiang Univ. A 4,  181 (2003)

    Article  Google Scholar 

  21. I A Hassanien, A A Salama and A M Elaiw, Appl. Math. Comput. 154(2),  313 (2004)

    MathSciNet  Google Scholar 

  22. M A Mansour and N A El-Shaer, Transp. Porous Media 57(3),  333 (2004)

    Article  Google Scholar 

  23. A M Elaiw, F S Ibrahim and A A Bakr, ZAMM 87,  528 (2007)

    Article  ADS  Google Scholar 

  24. P K Gaur, A K Jha and R Sharma, Int. J. Appl. Mech. Eng. 21(2),  323 (2016)

    Article  Google Scholar 

  25. I Siddique and I A Mirza, Results Phys. 7,  3928 (2017)

    Article  ADS  Google Scholar 

  26. A Bejan, J. Heat Transfer 101(4), 718 (1979)

    Article  Google Scholar 

  27. J Li and C Kleinstreuer, J. Heat Transfer 132(12), 122401 (2010)

    Article  Google Scholar 

  28. C K Chen, B S Chen and C C Liu, Int. J. Heat Mass Transf. 79,  750 (2014)

    Article  Google Scholar 

  29. G Ibáñez, Int. J. Heat Mass Transf. 80,  274 (2015)

    Article  Google Scholar 

  30. R Ellahi, M Hassan and A Zeeshan, Int. J. Heat Mass Transf. 81,  449 (2015)

    Article  Google Scholar 

  31. A Zeeshan, M Hassan, R Ellahi and M Nawaz, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 231,  871 (2017)

    Article  Google Scholar 

  32. A A A A Al-Rashed, R Ranjbarzadeh, S Aghakhani, M Soltanimehr, M Afrand and T K Nguyen, Phys. A Stat. Mech. Appl. 521,  724 (2019)

    Article  Google Scholar 

  33. D S Bondarenko, M A Sheremet, H F Öztop and M E Ali, J. Therm. Anal. Calorim. 136(2),  673 (2019)

    Article  Google Scholar 

  34. X Shi, P Jaryani, A Amiri, A Rahimi and E H Malekshah, Powder Technol. 346,  160 (2019)

    Article  Google Scholar 

  35. S Liao, Beyond Perturbation: Introduction to the homotopy analysis method (Chapman and Hall\(/\)CRC, 2003)

  36. R K Tiwari and M K Das, Int. J. Heat Mass Transf. 50,  2002 (2007)

    Article  Google Scholar 

  37. W Aung and G Worku, J. Heat Transfer 108,  485 (1986)

    Article  Google Scholar 

  38. S Liao, Commun. Nonlinear Sci. Numer. Simul. 15(8),  2003 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  39. A Barletta, Int. J. Heat Mass Transf. 41(22),  3501 (1998)

    Article  Google Scholar 

  40. E Zanchini, Int. J. Heat Mass Transf. 41(23),  3949 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The researchers thank TEQIP-III, NIT Mizoram, for the financial support provided to Mr Lalrinpuia Tlau for his PhD work.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tlau, L., Ontela, S. Effect of shape of nanoparticles on mixed convection nanofluid flow in a porous medium with variable permeability: Analysis of the second law of thermodynamics. Pramana - J Phys 95, 188 (2021). https://doi.org/10.1007/s12043-021-02221-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02221-x

Keywords

PACS Nos

Navigation