Skip to main content
Log in

Evaluating the performance of new mass flux theory on Carreau nanofluid using the thermal aspects of convective heat transport

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Nanofluids can be engineered as per requirements and have applications in microelectronic, therapeutic activities, hybrid-mechanical machineries, aeronautics zones, thermonuclear storehouses, shielding of miscellaneous engines etc. Here, the aspects of new mass flux theory in magneto Carreau nanofluid with convective and variable connectivity have been studied. Additionally, nonlinear properties of mixed convection are examined. The shear thinning–thickening properties are analysed by utilising bvp4c algorithm for influential variables. The fluid temperature increases with thermophoresis and variable conductivity parameters. The outcomes of thermophoresis and Brownian motion parameters have conflicting influences on concentration field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A M Bayomy and M Z Saghir, Int. J. Heat Mass Transf. 107, 181 (2017)

    Article  Google Scholar 

  2. S U S Choi and J A Eastman, ASME Int. Mech. Eng. Congr. Expo. 99, (1995)

  3. K Thriveni and B Mahantesh, Heat Transf. 49, 4759 (2020)

    Article  Google Scholar 

  4. M S Anwar, Phys. Scr. 95, 035211 (2020)

    Article  ADS  Google Scholar 

  5. S R Chaurasia and R M Sarviya, Int. Commun. Heat Mass Transf. 122, 105138 (2021)

    Article  Google Scholar 

  6. N Mazaheri, M Bahiraei and S Razi, Powder Technol. 383, 484 (2021)

    Article  Google Scholar 

  7. J Philip and P D Shima, Adv. Colloid Interface Sci. 183–184, 30 (2012)

    Article  Google Scholar 

  8. R U Haq, Z H Khan and W A Khan, Physica E 63, 215 (2014)

    Article  ADS  Google Scholar 

  9. P V S Narayana, J. Nanofluids 6, 1181 (2017)

    Article  Google Scholar 

  10. T Hayat, M Waqas, M I Khan and A Alsaedi, J. Mol. Liq. 225, 302 (2017)

    Article  Google Scholar 

  11. A Rasheed and M S Anwar, Comput. Math. Appl. 74, 2485 (2017)

    Article  MathSciNet  Google Scholar 

  12. M Khan, M Irfan and W A Khan, Int. J. Mech. Sci. 130 375 (2017)

    Article  Google Scholar 

  13. M Waqas, M I Khan, T Hayat and A Alsaedi, Comput. Meth. Appl. Mech. Eng. 324, 640 (2017)

    Article  ADS  Google Scholar 

  14. B Mahanthesh, I L Animasaun, M Rahimi-Gorji and I M Alarifi, Physica A 535, 122471 (2019)

    Article  MathSciNet  Google Scholar 

  15. K Thriveni and B Mahanthesh, Eur. Phys. J. Plus 135, 459 (2020)

    Article  Google Scholar 

  16. D Mahanty, R Babu and B Mahanthesh, Multidisc. Model. Mater. Struct. 16, 915 (2020)

    Google Scholar 

  17. K Rafiq, M Irfan, M Khan, M S Anwar and W A Khan, Phys. Scr. 96, 045002 (2020)

    Article  ADS  Google Scholar 

  18. B Mahantesh and J Mackolil, Int. Commun. Heat Mass Transf. 120, 105040 (2021)

    Article  Google Scholar 

  19. M Irfan, R Aftab and M Khan, Chin. J. Phys. 71, 444 (2021)

    Article  Google Scholar 

  20. K Thriveni and B Mahanthesh, J. Therm. Anal. Calor. 143, 2729 (2021)

    Article  Google Scholar 

  21. W Ibrahim and C Zemedu, Math. Prob. Eng. 2020, 3596368 (2020)

    Google Scholar 

  22. M Waqas, M I Khan, Z Asghar, S Kadry, Y M Chu and W A Khan, J. Mater. Res. Technol. 9, 11080 (2020)

    Article  Google Scholar 

  23. M Irfan, Surfaces Interfaces 23, 100926 (2021)

    Article  Google Scholar 

  24. P M Patil and H F Shankar, Alex. Eng. J. 60, 1043 (2021)

    Article  Google Scholar 

  25. T Hayat, M Rashid, A Alsaedi and S Asghar, J. Braz. Soc. Mech. Sci. Eng. 41, 86 (2019)

    Article  Google Scholar 

  26. B C Prasannakumara, M G Reddy, G T Thammanna and B J Gireesha, Nonlinear Eng. 7, 197 (2018)

    Article  ADS  Google Scholar 

  27. M Khan, M Irfan, W A Khan and M Ayaz, Pramana – J. Phys. 91: 14 (2018)

    Google Scholar 

  28. M Khan, M Irfan and W A Khan, Pramana – J. Phys. 92: 17 (2019)

    ADS  Google Scholar 

  29. M Madhu, B Mahanthesh, N S Shashikumar, S A Shehzad, S U Khan and B J Gireesha, Int. Commun. Heat Mass Transf, 117, 104761 (2020)

    Article  Google Scholar 

  30. P V S Narayana, N Tarakaramu, G Sarojamma and I L Animasaun, Therm. Sci. Eng. Appl. 13, 021028 (2021)

    Article  Google Scholar 

  31. M Irfan, W A Khan, M Khan and M Mudassar Gulzar, J. Phys. Chem. Solids 125, 141 (2018)

    Article  ADS  Google Scholar 

  32. S Sharidan, T Mahmood and I Pop, Int. J. Appl. Mech. Eng. 11, 647 (2006)

    Google Scholar 

  33. A J Chamkha, A M Aly and M A Mansour, Chem. Eng. Commun. 197, 846 (2010)

    Article  Google Scholar 

  34. C Y Wang, Phys. Fluids 27, 1915 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  35. I C Liu and H I Anderson, Int. J. Heat Mass Transf. 51, 4018 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Irfan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, M., Rafiq, K., Anwar, M.S. et al. Evaluating the performance of new mass flux theory on Carreau nanofluid using the thermal aspects of convective heat transport. Pramana - J Phys 95, 203 (2021). https://doi.org/10.1007/s12043-021-02217-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02217-7

Keywords

Navigation