Skip to main content
Log in

Exploring the impact of magnetic dipole on the radiative nanofluid flow over a stretching sheet by means of KKL model

Pramana Aims and scope Submit manuscript

Abstract

This study mainly focusses on the rheological properties of the nanofluids by using Koo–Kleinstreuer–Li model. The nanofluids have been proposed as viable replacements to traditional fluids due to their increased heat transport capacity. In this regard, the influence of non-uniform heat sink/source and thermal radiation effects on the nanoliquid flow past a stretching sheet is studied in the presence of chemical reaction and magnetic dipole. The defined flow equations are transformed to ordinary differential equations by using appropriate similarity variables and then they are numerically tackled with Runge Kutta Fehlberg-45 (RKF-45) scheme by adopting shooting process. The graphical outcomes of the velocity, thermal, concentration profiles, drag force, Sherwood number and Nusselt number are found to get an obvious insight into the existing boundary layer flow problem. The outcomes reveal that, the gain in values of radiation parameter improves the thermal profile due to the production of inner heat. The rise in Biot number improves the thermal boundary layer region which automatically boosts up the thermal profile. Further, the escalation in space-dependent internal heat sink/source parameter deteriorates the rate of heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. S Choi, Am. Soc. Mech. Eng. Fluids Eng. Div. Publ. FED 231, 99 (1995)

    Google Scholar 

  2. M I Khan and F Alzahrani, J. Therm. Sci. Eng. Appl. 13, 051009 (2021)

    Article  Google Scholar 

  3. J K Madhukesh et al, J. Mol. Liq. 335, 116103 (2021)

    Article  Google Scholar 

  4. M Irfan, Surf. Interfaces 23, 100926 (2021)

    Article  Google Scholar 

  5. J Koo and C Kleinstreuer, Int. J. Heat Mass Transf. 48, 2652 (2005)

    Article  Google Scholar 

  6. J Li, Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS, Ph.D. thesis (NC State University, 2008)

  7. M Sheikholeslami, D D Ganji, M Gorji-Bandpy and S Soleimani, J. Taiwan Inst. Chem. Eng. 45, 795 (2014)

    Article  Google Scholar 

  8. M Sheikholeslami, M Gorji-Bandpy and D D Ganji, Arab. J. Sci. Eng. 39, 5007 (2014)

    Article  Google Scholar 

  9. S R Hosseini, M Sheikholeslami, M Ghasemian and D D Ganji, Powder Technol. 324, 36 (2018)

    Article  Google Scholar 

  10. R J Punith Gowda et al, Chaos Solitons Fractals 145, 110774 (2021)

    Article  MathSciNet  Google Scholar 

  11. H I Andersson and O A Valnes, Acta Mech. 128, 39 (1998)

    Article  Google Scholar 

  12. A Zeeshan, A Majeed and R Ellahi, J. Mol. Liq. 215, 549 (2016)

    Article  Google Scholar 

  13. T Hayat, M Ijaz Khan, M Imtiaz, A Alsaedi and M Waqas, Phys. Fluids 28, 102003 (2016)

    Article  ADS  Google Scholar 

  14. A Majeed, A Zeeshan, F M Noori and U Masud, Mech. Ind. 20, 502 (2019)

    Article  Google Scholar 

  15. R Naveen Kumar et al, J. Mol. Liq. 334, 116494 (2021)

    Article  Google Scholar 

  16. M Ijaz Khan and F Alzahrani, Int. J. Mod. Phys. B 34, 2050132 (2020)

    Article  ADS  Google Scholar 

  17. T Hayat, M Kanwal, S Qayyum and A Alsaedi, Phys. Stat. Mech. Appl. 544, 123437 (2020)

    Article  Google Scholar 

  18. S Rashid, M I Khan, T Hayat, M Ayub and A Alsaedi, Appl. Nanosci. 10, 2965 (2020)

    Article  Google Scholar 

  19. F Mabood, T A Yusuf and I E Sarris, Spec. Top. Amp. Rev. Porous Media Int. J. 11, 595 (2020)

    Article  Google Scholar 

  20. R J Punith Gowda, R Naveen Kumar, A M Jyothi, B C Prasannakumara and I E Sarris, Processes 9 (2021), https://doi.org/10.3390/pr9040702

  21. M Irfan, M Khan and W A Khan, Phys. Lett. A 383, 376 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  22. S Nadeem, M Ijaz and M Ayub, J. Therm. Anal. Calorim. 143, 2313 (2020)

    Article  Google Scholar 

  23. M Faisal, I Ahmad and T Javed, Heat Transf. 50, 352 (2021)

    Article  Google Scholar 

  24. M Ramzan, N Shaheen, S Kadry, Y Ratha and Y Nam, Appl. Sci. 10, 432 (2020)

    Article  Google Scholar 

  25. R N Kumar, H B Mallikarjuna, N Tigalappa, R J P Gowda and D U Sarwe, Int. J. Comput. Methods Eng. Sci. Mech. (2021), https://doi.org/10.1080/15502287.2021.1920645

  26. T Hayat, M I Khan, M Waqas, A Alsaedi and T Yasmeen, Chin. J. Chem. Eng. 25, 257 (2017)

    Article  Google Scholar 

  27. M I Khan, S Qayyum, T Hayat, M I Khan and A Alsaedi, Int. J. Heat Mass Transf. 133, 959 (2019)

    Article  Google Scholar 

  28. M Ijaz Khan, A Alsaedi, S Qayyum, T Hayat and M Imran Khan, Colloids Surf. Physicochem. Eng. Asp. 570, 117 (2019)

    Article  Google Scholar 

  29. G Rasool, T Zhang, A J Chamkha, A Shafiq, I Tlili and G Shahzadi, Entropy 22 (2020)

  30. R S V Kumar, P G Dhananjaya, R N Kumar, R J P Gowda and B C Prasannakumara, Int. J. Comput. Methods Eng. Sci. Mech. (2021), https://doi.org/10.1080/15502287.2021.1900451.

  31. M Q Brewster, Thermal radiative transfer and properties (Wiley, 1992)

  32. M Sajid and T Hayat, Int. Commun. Heat Mass Transf. 35, 347 (2008)

    Article  Google Scholar 

  33. E M Abo-Eldahab and M A El Aziz, Int. J. Therm. Sci. 43, 709 (2004)

    Article  Google Scholar 

  34. M S Abel and M M Nandeppanavar, Commun. Nonlinear Sci. Numer. Simul. 14, 2120 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. A S Alsagri and R Moradi, Case Stud. Therm. Eng. 14, 100478 (2019)

    Article  Google Scholar 

  36. S A Mohammadein, K Raslan, M S Abdel-Wahed and E M Abedel-Aal, Results Phys. 10, 194 (2018)

    Article  ADS  Google Scholar 

  37. D Pal and H Mondal, Commun. Nonlinear Sci. Numer. Simul. Commun. 15, 1197 (2010)

    Article  ADS  Google Scholar 

  38. P O Olanrewaju, World Appl. Sci. J. 16, 37 (2012)

    Google Scholar 

  39. A Zeeshan and A Majeed, J. Nanofluids 5, 617 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B C Prasannakumara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveen Kumar, R., Suresha, S., Gowda, R.J.P. et al. Exploring the impact of magnetic dipole on the radiative nanofluid flow over a stretching sheet by means of KKL model. Pramana - J Phys 95, 180 (2021). https://doi.org/10.1007/s12043-021-02212-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02212-y

Keywords

PACS

Navigation