Abstract
This study mainly focusses on the rheological properties of the nanofluids by using Koo–Kleinstreuer–Li model. The nanofluids have been proposed as viable replacements to traditional fluids due to their increased heat transport capacity. In this regard, the influence of non-uniform heat sink/source and thermal radiation effects on the nanoliquid flow past a stretching sheet is studied in the presence of chemical reaction and magnetic dipole. The defined flow equations are transformed to ordinary differential equations by using appropriate similarity variables and then they are numerically tackled with Runge Kutta Fehlberg-45 (RKF-45) scheme by adopting shooting process. The graphical outcomes of the velocity, thermal, concentration profiles, drag force, Sherwood number and Nusselt number are found to get an obvious insight into the existing boundary layer flow problem. The outcomes reveal that, the gain in values of radiation parameter improves the thermal profile due to the production of inner heat. The rise in Biot number improves the thermal boundary layer region which automatically boosts up the thermal profile. Further, the escalation in space-dependent internal heat sink/source parameter deteriorates the rate of heat transfer.











References
S Choi, Am. Soc. Mech. Eng. Fluids Eng. Div. Publ. FED 231, 99 (1995)
M I Khan and F Alzahrani, J. Therm. Sci. Eng. Appl. 13, 051009 (2021)
J K Madhukesh et al, J. Mol. Liq. 335, 116103 (2021)
M Irfan, Surf. Interfaces 23, 100926 (2021)
J Koo and C Kleinstreuer, Int. J. Heat Mass Transf. 48, 2652 (2005)
J Li, Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS, Ph.D. thesis (NC State University, 2008)
M Sheikholeslami, D D Ganji, M Gorji-Bandpy and S Soleimani, J. Taiwan Inst. Chem. Eng. 45, 795 (2014)
M Sheikholeslami, M Gorji-Bandpy and D D Ganji, Arab. J. Sci. Eng. 39, 5007 (2014)
S R Hosseini, M Sheikholeslami, M Ghasemian and D D Ganji, Powder Technol. 324, 36 (2018)
R J Punith Gowda et al, Chaos Solitons Fractals 145, 110774 (2021)
H I Andersson and O A Valnes, Acta Mech. 128, 39 (1998)
A Zeeshan, A Majeed and R Ellahi, J. Mol. Liq. 215, 549 (2016)
T Hayat, M Ijaz Khan, M Imtiaz, A Alsaedi and M Waqas, Phys. Fluids 28, 102003 (2016)
A Majeed, A Zeeshan, F M Noori and U Masud, Mech. Ind. 20, 502 (2019)
R Naveen Kumar et al, J. Mol. Liq. 334, 116494 (2021)
M Ijaz Khan and F Alzahrani, Int. J. Mod. Phys. B 34, 2050132 (2020)
T Hayat, M Kanwal, S Qayyum and A Alsaedi, Phys. Stat. Mech. Appl. 544, 123437 (2020)
S Rashid, M I Khan, T Hayat, M Ayub and A Alsaedi, Appl. Nanosci. 10, 2965 (2020)
F Mabood, T A Yusuf and I E Sarris, Spec. Top. Amp. Rev. Porous Media Int. J. 11, 595 (2020)
R J Punith Gowda, R Naveen Kumar, A M Jyothi, B C Prasannakumara and I E Sarris, Processes 9 (2021), https://doi.org/10.3390/pr9040702
M Irfan, M Khan and W A Khan, Phys. Lett. A 383, 376 (2019)
S Nadeem, M Ijaz and M Ayub, J. Therm. Anal. Calorim. 143, 2313 (2020)
M Faisal, I Ahmad and T Javed, Heat Transf. 50, 352 (2021)
M Ramzan, N Shaheen, S Kadry, Y Ratha and Y Nam, Appl. Sci. 10, 432 (2020)
R N Kumar, H B Mallikarjuna, N Tigalappa, R J P Gowda and D U Sarwe, Int. J. Comput. Methods Eng. Sci. Mech. (2021), https://doi.org/10.1080/15502287.2021.1920645
T Hayat, M I Khan, M Waqas, A Alsaedi and T Yasmeen, Chin. J. Chem. Eng. 25, 257 (2017)
M I Khan, S Qayyum, T Hayat, M I Khan and A Alsaedi, Int. J. Heat Mass Transf. 133, 959 (2019)
M Ijaz Khan, A Alsaedi, S Qayyum, T Hayat and M Imran Khan, Colloids Surf. Physicochem. Eng. Asp. 570, 117 (2019)
G Rasool, T Zhang, A J Chamkha, A Shafiq, I Tlili and G Shahzadi, Entropy 22 (2020)
R S V Kumar, P G Dhananjaya, R N Kumar, R J P Gowda and B C Prasannakumara, Int. J. Comput. Methods Eng. Sci. Mech. (2021), https://doi.org/10.1080/15502287.2021.1900451.
M Q Brewster, Thermal radiative transfer and properties (Wiley, 1992)
M Sajid and T Hayat, Int. Commun. Heat Mass Transf. 35, 347 (2008)
E M Abo-Eldahab and M A El Aziz, Int. J. Therm. Sci. 43, 709 (2004)
M S Abel and M M Nandeppanavar, Commun. Nonlinear Sci. Numer. Simul. 14, 2120 (2009)
A S Alsagri and R Moradi, Case Stud. Therm. Eng. 14, 100478 (2019)
S A Mohammadein, K Raslan, M S Abdel-Wahed and E M Abedel-Aal, Results Phys. 10, 194 (2018)
D Pal and H Mondal, Commun. Nonlinear Sci. Numer. Simul. Commun. 15, 1197 (2010)
P O Olanrewaju, World Appl. Sci. J. 16, 37 (2012)
A Zeeshan and A Majeed, J. Nanofluids 5, 617 (2016)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Naveen Kumar, R., Suresha, S., Gowda, R.J.P. et al. Exploring the impact of magnetic dipole on the radiative nanofluid flow over a stretching sheet by means of KKL model. Pramana - J Phys 95, 180 (2021). https://doi.org/10.1007/s12043-021-02212-y
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12043-021-02212-y
Keywords
- Nanofluid
- Koo–Kleinstreuer–Li model
- magnetic dipole
- thermal radiation
- non-uniform heat/source
- chemical reaction