Skip to main content
Log in

Effect of deposition time and annealing process in chemical bath deposited CdS thin film

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this study, cadmium sulphide (CdS) thin layers are deposited at different deposition time periods (2.5, 3.5 and 5 h) on glass substrate by chemical bath deposition (CBD) technique at \(60^{\circ }\)C. The Seebeck effect, XRD and Raman spectra, SEM images and EDX analysis indicated the formation of n-type, amorphous nanograins, with relatively low sulphur deficiencies. The optical characterisations showed that the optical band gaps of the layers are varying in the range of 2.10–2.30 eV, as a result of band tail width originated from the sulphur vacancies acting as native donor-like levels distributed close to the conduction band edge, consistent with the EDX analysis. We also found that through the annealing treatments, the diameters of the nanograins are increased, the crystallinity of the layer has improved, and more importantly its electrical conductivity has largely increased (\(\sim \) 8 times), which is very important in CdS-related heterostructure photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C Santiago Tepantlan, A M Perez Gonzalez and I Valeriano Arreola, Rev. Mex. Fis. 54, 112 (2008)

  2. M Shaban, M Mustafa and A M El Sayed, Mater. Sci. Semicond. Process. 56, 329 (2016)

    Article  Google Scholar 

  3. I C Chang and P Katzka, Opt. Lett. 7, 535 (1982)

    Article  ADS  Google Scholar 

  4. M Isik, H H Gullua, S Delice, M Parlak and N M Gasanly, Mater. Sci. Semicond. Process. 93, 148 (2019)

    Article  Google Scholar 

  5. S Arya, A Sharma, B Singh, M Riyas, P Bandhoria, M Aatif and V Gupta, Opt. Mater. 79, 115 (2018)

    Article  ADS  Google Scholar 

  6. W Caseri, Macromol. Rapid Commun. 21, 705 (2000)

    Article  Google Scholar 

  7. A Graf, N Maticiuc, N Spalatu, V Mikli, A Mere, A Gavrilov and J Hiie, Thin Solid Films 582, 351 (2015)

    Article  ADS  Google Scholar 

  8. O H Abd-Elkader and A A Shaltout, Mater. Sci. Semicond. Process. 35, 132 (2015)

    Article  Google Scholar 

  9. S N Sharma, R K Sharma, K N Sood and S Singh, Mater. Chem. Phys. 93, 368 (2005)

    Article  Google Scholar 

  10. K S R K Rao and G Kumar, Energy Environ. Sci. 7, 45 (2014)

    Article  Google Scholar 

  11. C Zhang, H Huo, Y Li, B Li and Y Yang, Mater. Lett. 102–103, 50 (2013)

    Article  Google Scholar 

  12. R Devi, P Purkayastha, P K Kalita and B K Sarma, Bull. Mater. Sci. 30, 123 (2007)

    Article  Google Scholar 

  13. S Ramesh and V Narayanan, Chem. Sci. Trans. 2, 192 (2013)

    Google Scholar 

  14. R W Birknoire, B E McCandles and S S Hegedus, Sol. Energy 12, 145 (1992)

    Google Scholar 

  15. M Isik, H H Gullu, S Delice, M Parlak and N M Gasanly, Mater. Sci. Semicond. Process. 93, 148 (2019)

    Article  Google Scholar 

  16. P Raji, C Sanjeeviraja and K Ramachandra, Bull. Mater. Sci. 28, 233 (2005)

    Article  Google Scholar 

  17. E M Feldmeier, A Fuchs, J Schaffner, H J Schimper, A Klein and W Jaegermann, Thin Solid Films 519, 7596 (2011)

    Article  ADS  Google Scholar 

  18. J B Lee, S H Kwak and H J Kim, Thin Solid Films 423, 262 (2003)

    Article  ADS  Google Scholar 

  19. M Maghouli and H Eshghi, Superlatt. Microstruct. 128, 327 (2019)

    Article  ADS  Google Scholar 

  20. H Moualkia, S Hariech and M S Aida, Thin Solid Films 518, 1259 (2009)

    Article  ADS  Google Scholar 

  21. Y Liu, T Tan, B Wang, R Zhai, X Song, E Li, H Wang and H Yan, J. Colloid Interface Sci. 320, 540 (2008)

    Article  ADS  Google Scholar 

  22. S Yılmaz, Appl. Surf. Sci. 357, 873 (2015)

    Article  ADS  Google Scholar 

  23. T J Ha, H H Park, S Y Jung, S J Yoon, J S Kim and H W Jang, Thin Solid Films 518, 7196 (2010)

    Article  ADS  Google Scholar 

  24. S Ashrafabadi and H Eshghi, J. Mater. Sci. Mater. Electron. 29, 6470 (2018)

    Article  Google Scholar 

  25. H Metin and R Esen, J. Cryst. Growth 258, 141 (2003)

    Article  ADS  Google Scholar 

  26. H Zhan, J K Li and Y F Cheng, Optik 126, 1411 (2015)

    Article  ADS  Google Scholar 

  27. P Q Zhao, L Z Liu, H T Xue, X L Wu, J C Shen and P K Chu, Appl. Phys. Lett. 102, 061910 (2013)

    Article  ADS  Google Scholar 

  28. H Jerominek, M Pigeon, S Patela, Z Jakubczyk, C Delisle and R Tremblay, J. Appl. Phys. 63, 957 (1988)

    Article  ADS  Google Scholar 

  29. S Aksay, M Polat, T Özer, S Köse and G Gürbüz, Appl. Surf. Sci. 257, 10072 (2011)

    Article  ADS  Google Scholar 

  30. J Lee, Thin Solid Films 451–452, 170 (2004)

    Article  ADS  Google Scholar 

  31. F Urbach, Phys. Rev. 92, 1324 (1953)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosein Eshghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fekri, N., Eshghi, H. Effect of deposition time and annealing process in chemical bath deposited CdS thin film. Pramana - J Phys 95, 166 (2021). https://doi.org/10.1007/s12043-021-02204-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02204-y

Keywords

PACS

Navigation