Skip to main content
Log in

A study of electron scattering from O\(_3\) and its isovalent molecules from 0.1 to 5 keV

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The electron scatterings from isovalent molecules like O\(_3\), S\(_3\), OSO and SOS are studied using single centre expansion (SCE) approximation. The elastic differential cross-sections, integral and momentum transfer cross-sections are computed for these targets from ionisation threshold to 5 keV. The molecular wave functions of the targets were obtained from the multicentre expansion of the Gaussian-type orbitals within the single determinant Hartree–Fock self-consistent field scheme. The multipole expansion of the target at the centre of mass includes the dipole and quadrupole terms. The target interactions are modelled within the local potential approximation and consist of static, correlation-polarisation and exchange effects. The results are in good agreement with the available experimental and theoretical results. The SCE results match smoothly near the ionisation threshold with the ab-initio R-matrix results. This helped in estimating the scattering cross-section data from 0.1 to 5 keV energy. The total cross-sections obtained by summing the elastic and inelastic cross-sections are also in excellent agreement with the available results. The scattering study from isovalent molecules further helped in understanding the effects of dipole moment, polarisation and geometrical size while evaluating the collision problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. http://cccbdb.nist.gov

  2. B Elliasson and U Kogelschatz, J. Phys. B 19, 1241 (1986)

    Article  ADS  Google Scholar 

  3. P Pignolet, S Hadj-Ziane, B Held, R Peyrous, J M Benas and C Coste, J. Phys. D 23, 1069 (1990)

  4. J R Spencer, K L Jessup, M A McGrath, G E Ballester and R Yelle, Science 288, 1208 (2000)

    Article  ADS  Google Scholar 

  5. S Thorwirth, M C McCarthy, C A Gottlieb, P Thaddeus, H Gupta and J F Stanton, J. Chem. Phys. 123, 054326 (2005)

  6. J S Lewis, Physics and chemistry of the solar system (Academic Press, 2004)

  7. L E Machado, R T Sugohara, A S dos Santos, M-T Lee, I Iga, G L C de Souza, M G P Homem, S E Michelin and L M Brescansin, Phys. Rev. A 84, 032709 (2011)

  8. W J Lo, Yu-J W, and Y-P Lee, J. Chem. Phys. 117, 6655 (2002)

  9. Y Itikawa, Molecular processes in plasmas collisions of charged particles with molecules (Springer, 2007)

  10. L G Christophorou and J K Olthoff, Fundamental electron interactions with plasma processing gases (Springer, 2004)

  11. B Bederson and H Walther, Adv. in atomic, molecular and optical physics (Academic Press, 2000) Vol. 43

  12. M Gupta and K L Baluja, J. Phys. B 38, 4057 (2005)

    Article  ADS  Google Scholar 

  13. S Kaur, A Bharadvaja and K L Baluja, Phys. Rev. A 83, 062707 (2011)

  14. S Kaur and K L Baluja, Phys. Rev. A 82, 022717 (2010)

  15. M Gupta and K L Baluja, Phys. Rev. A 73, 042702 (2006)

  16. B K Sarpal, B M Nestmann and S D Peyerimhoff, J. Phys. B: At. Mol. Opt. Phys. 13, 1333 (1998)

    Article  ADS  Google Scholar 

  17. M T Lee, S E Michelin, T Kroin and L E Machado, J. Phys. B: At. Mol. Opt. Phys. 31, 1781 (1998)

    Article  ADS  Google Scholar 

  18. M H F Bettega, M T do N Varella, L G Ferreira and M A P Lima, J. Phys. B: At. Mol. Opt. Phys. 31, 4419 (1998)

  19. A P P Natalense, M T do N Varella, M H F Bettega, L G Ferreira and M A P Lima, J. Phys. B: At. Mol. Opt. Phys. 32, 5523 (1999)

  20. P G Burke, R-Matrix theory of atomic collisions: Application to atomic, molecular and optical processes (Springer-Verlag, Berlin, 2011)

    Book  Google Scholar 

  21. J Tennyson, Phys. Rep. 491, 29 (2010)

    Article  ADS  Google Scholar 

  22. D Madden, J Tennyson and R Zhang, J. Phys.: Conf. Ser. 300, 012017 (2011)

  23. M Jones and J Tennyson, J. Phys. B: At. Mol. Opt. Phys. 43, 045101 (2010)

  24. D Gorfinkiel and J Tennyson, J. Phys. B: At. Mol. Opt. Phys. 37, L343 (2004)

    Article  Google Scholar 

  25. D Gorfinkiel and J Tennyson, J. Phys. B: At. Mol. Opt. Phys. 38, 1607 (2005)

    Article  ADS  Google Scholar 

  26. K N Joshipura and N Mason, Atomic-molecular ionisation by electron scattering: Theory and applications (Cambridge University Press, 2018)

  27. F Blanco and G Garcia, Phys. Lett. A 317, 458 (2003)

    Article  ADS  Google Scholar 

  28. F Blanco and G Garcia, J. Phys. B 42, 145203 (2009)

  29. F Blanco, J Rosado, A Illana and G Garcia, Phys. Lett. A 374, 4420 (2010)

    Article  ADS  Google Scholar 

  30. A Jain and K L Baluja, Phys. Rev. A 45, 202 (1992)

    Article  ADS  Google Scholar 

  31. W Y Baek, A Arndt, M U Bug, H Rabus and M Wang, Phys. Rev. A 88, 032702 (2013)

  32. M Kaur, G Kaur, A K Jain, H Mohan, P S Singh, S Sharma and K L Baluja, Phys. Rev. A 97, 052711 (2018)

  33. G Kaur, A K Jain, H Mohan, P S Singh, S Sharma and A N Tripathi, Phys. Rev. A 91, 022702 (2015)

  34. F A Gianturco, V Di Martino and A Jain, Il Nuovo Cimento D 14(4), 411 (1992)

    Article  ADS  Google Scholar 

  35. W M Huo and F A Gianturco (Eds) Computational methods for electron molecule collisions (Plenum, New York, 1994)

  36. F A Gianturco and A Jain, Phys. Rep. 143, 347 (1986)

    Article  ADS  Google Scholar 

  37. F A Gianturco, R R Lucchese, N Sanna and A Talamo, A generalized single centre approach for treating electron scattering from polyatomic molecules, in: Electron collisions with molecules, clusters and surfaces, edited by H Ehrhardt and L A Morgan (Plenum, New York, 1994)

  38. Y-K Kim and M E Rudd, Phys. Rev. A 50, 3954 (1994)

    Article  ADS  Google Scholar 

  39. J M Carr, P G Galiatsatos, J D Gorfinkiel, A G Harvey, M A Lysaght, D Madden, Z Masn, M Plummer and J Tennyson, Eur. Phys. J. D 66, 58 (2012)

    Article  ADS  Google Scholar 

  40. Z Masin, J Benda, J D Gorfinkiel, A G Harvey and J Tennyson, Comput. Phys. Commun. 249, 107092 (2020)

  41. https://ccpforge.cse.rl.ac.uk/gf/project/ukrmol-in

  42. N Sanna and F A Gianturco, Comput. Phys. Commun. 128, 139 (2000)

    Article  ADS  Google Scholar 

  43. M Tinkham, Group theory and quantum mechanics (McGraw-Hill, New York, 1964)

  44. J P Perdew and A Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  45. S Hara, J. Phys. Soc. Jpn. 22, 710 (1967)

    Article  ADS  Google Scholar 

  46. N Sanna and F A Gianturco, Comput. Phys. Commun. 114, 142 (1998)

    Article  ADS  Google Scholar 

  47. A Bharadvaja, S Kaur and K L Baluja, Phys. Rev. A 91, 032701 (2015)

  48. A Bharadvaja, S Kaur and K L Baluja, Pramana – J. Phys. 89(2): 30 (2017)

  49. I Fabrikant, J Phys. B: At. Mol. Opt. Phys. 49, 222005 (2016)

  50. L Alvarez, F Costa, A I Lozano, J C Oller, A Munoz, F Blanco, P Limao-Vieira, R D White, M J Brunger and G Garcia, Phys. Chem. Chem. Phys. 22, 13505 (2020)

    Article  Google Scholar 

  51. S Stefanowska-Tur, P Mozejko, E Ptasinska-Denga and C Szmytkowski, J. Chem. Phys. 150, 094303 (2019)

  52. GAUSSIAN 03, Gaussian, Inc, Wallingford, CT

  53. N Sanna, I Baccarelli and G Morelli, Comput. Phys. Commun. 180, 2544 (2009)

    Article  ADS  Google Scholar 

  54. M H Rees, Physics and chemistry of the upper atmosphere (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  55. J L de Pablos, P A Kendall, P Tegeder, A Williart, F Blanco, G Garcia and N J Mason, J. Phys. B 35, 865 (2002)

    Article  ADS  Google Scholar 

  56. K N Joshipura, B K Antony and M Vinodkumar, J. Phys. B 35, 4211 (2002)

    Article  ADS  Google Scholar 

  57. T W Shyn and C J Sweeney, Phys. Rev. A 47(4), 2919 (1993)

    Article  ADS  Google Scholar 

  58. S Kumar, Nature (London) 280, 758 (1979)

    Article  ADS  Google Scholar 

  59. F Darrell, F Strobel and J Davis, Astrophys. J. 238, L49 (1980)

    Article  ADS  Google Scholar 

  60. A F Cheng, Astrophys. J. 242, 812 (1980)

    Article  ADS  Google Scholar 

  61. J Marling, IEEE J. Quantum Electron. 14, 4 (1978)

    Article  ADS  Google Scholar 

  62. D Klee and H Hocker, Adv. Polym. Sci. 149, 1 (1999)

    Article  Google Scholar 

  63. I Gallinberti, Pure Appl. Chem. 60, 663 (1988)

    Article  Google Scholar 

  64. S Trajmar and T W Shyn, J. Phys. B 22, 2911 (1989)

    Article  ADS  Google Scholar 

  65. R J Gulley and S J Buckman, J. Phys. B 27, 1833 (1994)

    Article  ADS  Google Scholar 

  66. F A Gianturco, P Paioletti and N Sanna, J. Phys. B: At. Mol. Opt. Phys. 30, 4535 (1997)

    Article  ADS  Google Scholar 

  67. K N Joshipura and S Gangopadhyay, J. Phys. B 41, 215205 (2008)

  68. M Vinodkumar, C Limbachiya, A Barot and N Mason, Phys. Rev. A 86, 012706 (2012)

  69. M Hayashi, Electron collision cross-sections for molecules determined from beam and swarm data, in: Swarm studies and inelastic electron-molecule collisions edited by L C Pitchford, B V McKoy, A Chutjian and S Trajmar (Springer-Verlag, New York, 1987)

  70. T Meltzer, J Tennyson, Z Masin, M C Zammit, L H Scarlett, D V Fursa and I Bray, J. Phys. B: At. Mol. Opt. Phys. 53, 145204 (2020)

  71. R Zhang, A Faure and J Tennyson, Phys. Scr. 80, 015301 (2009)

  72. Y K Kim, W Hwang, N M Weinberger, M A Ali and M E Rudd, J. Chem. Phys. 106, 1026 (1997)

    Article  ADS  Google Scholar 

  73. https://physics.nist.gov/PhysRefData/ionisation/molTable.html

  74. A Zecca, J C Nogueira, G P Karwasz and R S Brusa, J. Phys. B 28, 477 (1995)

    Article  ADS  Google Scholar 

  75. C Szmytkowski, P Mozejko and A Krzysztofowicz, Radiat. Phys. Chem. 68, 307 (2003)

    Article  ADS  Google Scholar 

  76. Z Masin, J Benda, A G Harvey, A Al-Refaie, J D Gorfinkiel and J Tennyson, UKRMol\(+\): UKRMol-in (Version 3.0). Zenodo. https://doi.org/10.5281/zenodo.3371125

Download references

Acknowledgements

The author AB is thankful to Prof. Robert Lucchese, Department of Chemistry, Texas AM University for his guidance on single centre expansion method and to Dr Fernando R Clemente, Gaussian Inc for giving useful insights about GAUSSIAN-16 during the workshop held in New Delhi from January 8 to 12, 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Bharadvaja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharadvaja, A., Kaur, S. & Baluja, K.L. A study of electron scattering from O\(_3\) and its isovalent molecules from 0.1 to 5 keV. Pramana - J Phys 95, 167 (2021). https://doi.org/10.1007/s12043-021-02202-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02202-0

Keywords

PACS Nos

Navigation