Skip to main content
Log in

Instability dynamics in gyrogravitating astroclouds with cosmic ray moderation in non-ideal MHD fabric

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The evolutionary instability dynamics, which is naturally excitable in an astrophysical complex gyrogravitating partially ionised molecular cloud in a magnetic field, is herein semianalytically investigated. It is rooted in a non-ideal classical non-relativistic magnetohydrodynamic (MHD) mean-fluidic model fabric. The effects of fluid kinematic viscosity, cosmic rays and tidal force field are concurrently included. Application of a standard normal mode analysis reduces the astrocloud into a unique generalised linear quartic dispersion relation having atypical variable coefficients. A numerical illustrative analysis shows that the instability is noticeably damped (grown) in the viscous (inviscid) domains. The magnetic field and rotation have stabilising influences against the non-local self-gravity. In contrast, the cosmic ray pressure and tidal interaction destabilise the cloud along its self-gravity. We see that the ambipolar diffusion is the only non-ideal MHD factor with significant stimulus on the magneto-acoustic waves. The non-trivial results explored here match with the prior predictions both as special cases and stimulating corollaries relevant in the bounded astrostructure creation dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E N Parker, Cosmical magnetic fields: Their origin and their activity (Clarendon Press, Oxford, UK, 1979)

    Google Scholar 

  2. F H Shu, Astrophys. J273, 202 (1983)

    Article  ADS  Google Scholar 

  3. J H Jeans, Phil. Trans. R. Soc. A 199, 1 (1902)

    ADS  Google Scholar 

  4. D Ryu, J Kim, S S Hong and T W Jong, Astrophys. J589, 338 (2003)

    Article  ADS  Google Scholar 

  5. H Mo, F V D Bosch and S White, Galaxy formation and evolution (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  6. K Shibata and R Matsumoto, Nature 353, 633 (1991)

    Article  ADS  Google Scholar 

  7. N F Cramer, The physics of Alfven waves (Wiley-VCH Verlag GmbH, Berlin, 2001)

    Book  Google Scholar 

  8. M Hanasz, G Kowal, K Otmianowska-Mazur and H Lesch, Astrophys. J. 605, L33 (2004)

    Article  ADS  Google Scholar 

  9. J P Freidberg, Ideal MHD (Cambridge University Press, New York, 2014)

    Book  Google Scholar 

  10. T Kuwabara and C M Ko, Astrophys. J798, 79 (2015)

    Article  ADS  Google Scholar 

  11. R E Pudritz, Astrophys. J350, 195 (1990)

    Article  ADS  Google Scholar 

  12. D S Balsara, Astrophys. J456, 775 (1996)

    Article  ADS  Google Scholar 

  13. Y-Q Lou, Mon. Not. R. Astron. Soc279, L67 (1996)

    Article  ADS  Google Scholar 

  14. S Sadhukhan, S Mondal and S Chakraborty, Mon. Not. R. Astron. Soc459, 3059 (2016)

    Article  ADS  Google Scholar 

  15. W D Langer, Astrophys. J. 225, 95 (1978)

    Article  ADS  Google Scholar 

  16. C R Braiding and M Wardle, Mon. Not. R. Astron. Soc. 422, 261 (2012)

    Article  ADS  Google Scholar 

  17. T C Mouschovias, G E Ciolek and S A Morton, Mon. Not. R. Astron. Soc415, 1751 (2011)

    Article  ADS  Google Scholar 

  18. M Wardle, Mon. Not. R. Astron. Soc307, 849 (1999)

    Article  ADS  Google Scholar 

  19. M Wardle, Astrophys. J311, 35 (2007)

    Google Scholar 

  20. B P Pandey and M Wardle, Mon. Not. R. Astron. Soc385, 2269 (2008)

    Article  ADS  Google Scholar 

  21. B P Pandey and C B Dwivedi, Mon. Not. R. Astron. Soc. 447, 3604 (2015)

    Article  ADS  Google Scholar 

  22. R J Hosking and R L Dewar, Fundamental fluid mechanics and magnetohydrodynamics (Springer, New York, 2016)

    Book  MATH  Google Scholar 

  23. P K Karmakar and H P Goutam, New A61, 84 (2018)

    Article  ADS  Google Scholar 

  24. S J Desch and T Mouschovias, Astrophys. J550, 314 (2004)

    Article  ADS  Google Scholar 

  25. L Mestel and L-Jr Spitzer, Mon. Not. R. Astron. Soc116, 503 (1956)

  26. H Kamaya and R Nishi, Astrophys. J.  543, 257 (2000)

    Article  ADS  Google Scholar 

  27. T Nakano, R Nishi and T Umebayashi, Astrophys. J. 573, 199 (2002)

    Article  ADS  Google Scholar 

  28. M S Ruderman, Sol. Phys. 131, 11 (1991)

    Article  ADS  Google Scholar 

  29. R B Larson, Mon. Not. R. Astron. Soc332, 155 (2002)

    Article  ADS  Google Scholar 

  30. G I Ogilvie, Mon. Not. R. Astron. Soc396, 794 (2009)

    Article  ADS  Google Scholar 

  31. C J Jog, Mon. Not. R. Astron. Soc. 434, L56 (2013)

    Article  ADS  Google Scholar 

  32. S Mondal and S Chakraborty, Mon. Not. R. Astron. Soc450, 1874 (2015)

    Article  ADS  Google Scholar 

  33. E R Harrison, Mon. Not. R. Astron. Soc. 154, 167 (1971)

    Article  ADS  Google Scholar 

  34. B V Somov, Cosmic plasma physics (Kluwer Academic Publishers, Dordrecht, 2000)

    Book  Google Scholar 

  35. Ellen G. Zweibel, Phys. Plasmas 20, 055501 (2013)

    Article  ADS  Google Scholar 

  36. E N Parker, Astrophys. J145, 811 (1966)

    Article  ADS  Google Scholar 

  37. J Binney and S Tremanine, Galactic dynamics (Princeton University Press, Princeton, 1987)

    MATH  Google Scholar 

  38. L-Jr Spitzer, Physical processes in the interstellar medium (Wiley, Weinheim, 2004)

  39. A L Peratt, IEEE Trans. Plasma Sci. 18, 26 (1990)

    Article  ADS  Google Scholar 

  40. R Kulsrud and W P Pearce, Astrophys. J156, 445 (1969)

    Article  ADS  Google Scholar 

  41. P Dutta and P K Karmakar, Astrophys. Space Sci364, 217 (2019)

    Article  ADS  Google Scholar 

  42. J Vranjes, Astrophys. Space Sci173, 293 (1990)

    Article  ADS  Google Scholar 

  43. E Dubinin, K Sauer and J F McKenzie, J. Geophys. Res. 109, A02208 (2004)

    Article  ADS  Google Scholar 

  44. D Kalita and P K Karmakar, Phys. Plasmas 27, 022902 (2020)

  45. A Haloi and P K Karmakar, Pramana – J. Phys. 95, 17 (2021)

    Article  ADS  Google Scholar 

  46. G R Lindfield and J E T Penny, Numerical methods using MATLAB (Elsevier, UK, 2012)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are extremely thankful to their learned colleagues for extending valuable comments and insightful suggestions. The financial support received through the SERB Project (Grant-EMR/2017/003222) is duly recognised.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pralay Kumar Karmakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, P., Karmakar, P.K. Instability dynamics in gyrogravitating astroclouds with cosmic ray moderation in non-ideal MHD fabric. Pramana - J Phys 95, 169 (2021). https://doi.org/10.1007/s12043-021-02199-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02199-6

Keywords

PACS Nos

Navigation