Skip to main content

Dynamics of the multispecies colliding plasmas of different atomic masses

Abstract

Laser-produced plasma plumes and the subsequent interaction zone of multispecies colliding plasmas have been investigated in vacuum (at \(5\times 10^{{-7}}\) mbar) by using Nd:YAG nanosecond laser as the energy source. The key features such as shape, size, expansion dynamics of the primary plumes and the resulting interaction zone have been examined by using a combination of solid targets (e.g. Al–Ni and Al–W) with different atomic masses. Fast imaging technique has been utilised to visualise the formation and expansion dynamics of the primary plasma plumes as well as the interaction zone. Optical emission spectroscopy (OES) is used to estimate the electron temperature and density of the plasma plumes. Optical time of flight has been used to get the velocity of ion and neutral particles in the plasma plume. Time-resolved images of plumes show significant differences depending on the target materials and energy of the two beams. We have observed that the primary plasma plumes with non-uniform expansion velocity produces interaction zone which expands at an angle in vacuum. Optimisation of laser energy imbalance has been done based on fast imaging results for the targets of different elements. These experimental findings can have important roles in the generation of multispecies plasma plumes and to control their species contribution in different applications, e.g. thin film deposition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    S A Ramsden and W E R Davies, Phys. Rev. Lett. 13, 227 (1964)

    ADS  Article  Google Scholar 

  2. 2.

    H Opower and E Burfinger, Phys. Lett. 16, 37 (1965)

    ADS  Article  Google Scholar 

  3. 3.

    A W Ehler, J. Appl. Phys. 37, 4962 (1966)

    ADS  Article  Google Scholar 

  4. 4.

    R B Hall, J. Appl. Phys. 40, 1941 (1969)

    ADS  Article  Google Scholar 

  5. 5.

    S Amoruso, G Ausanio, A C Barone, R Bruzzese, L Gragnaniello, M Vitiello and X Wang, J. Phys. B 38, L329 (2005)

    ADS  Article  Google Scholar 

  6. 6.

    R K Singh and J Narayan, Phys. Rev. B 41, 8843 (1990)

    ADS  Article  Google Scholar 

  7. 7.

    B Kumar, R K Singh, S Sengupta, P K Kaw and A Kumar, Phys. Plasmas 21, 083510 (2014)

    ADS  Article  Google Scholar 

  8. 8.

    F J Adrian, J Bohandy, B F Kim, A N Jette and P Thompson, J. Vacuum Sci. Technol. B: Microelectron. Process. Phenomena 5, 1490 (1987)

  9. 9.

    P T Rumsby, J Paul and M Masoud, Plasma Phys. 16, 969 (1974)

    ADS  Article  Google Scholar 

  10. 10.

    A Matsumoto, A Tamura, K Fukami, Y H Ogata and T Sakka, J. Appl. Phys. 113, 053302 (2013)

    ADS  Article  Google Scholar 

  11. 11.

    X Zeng, X L Mao, R Greif and R E Russo, Appl. Phys. A 80, 237 (2005)

    ADS  Article  Google Scholar 

  12. 12.

    P Yeates, C Fallon, E T Kennedy and J T Costello, Phys. Plasmas 18, 103104 (2011)

    ADS  Article  Google Scholar 

  13. 13.

    S V Bulanov, T Z Esirkepov, F F Kamenets, Y Kato, A V Kuznetsov, K Nishihara, F Pegoraro, T Tajima and V S Khoroshkov, Plasma Phys. Rep. 28, 975 (2002)

    ADS  Article  Google Scholar 

  14. 14.

    G Cristoforetti, S Legnaioli, V Palleschi, A Salvetti and E Tognoni, Appl. Phys. B: Lasers Opt. 80, 559 (2005)

    ADS  Article  Google Scholar 

  15. 15.

    R K Thareja, H Saxena and V Narayanan, J. Appl. Phys. 98, 034908 (2005)

    ADS  Article  Google Scholar 

  16. 16.

    B Kumar and R K Thareja, J. Appl. Phys. 108, 064906 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    S Amoruso, R Bruzzese and X Wang, Appl. Phys. Lett. 95, 251501 (2009)

    ADS  Article  Google Scholar 

  18. 18.

    J Hermann, C B Leborgne and D Hong, J. Appl. Phys. 83, 691 (1998)

    ADS  Article  Google Scholar 

  19. 19.

    S Mehrabian, M Aghaei and S H Tavassoli, Phys. Plasmas 17, 043301 (2010)

    ADS  Article  Google Scholar 

  20. 20.

    P K Pandey, R K Thareja and J T Costello, Phys. Plasmas 23, 103516 (2016)

    ADS  Article  Google Scholar 

  21. 21.

    X Li, Z Yang, J Wu, J Han, W Wei, S Jia and A Qiu, J. Appl. Phys. 119, 133301 (2016)

    ADS  Article  Google Scholar 

  22. 22.

    K F Al-Shboul, S S Harilal, A Hassanein and M Polek, J. Appl. Phys. 109, 053302 (2011)

    ADS  Article  Google Scholar 

  23. 23.

    S Mukasa, S Nomura, H Toyota, T Maehara, F Abe and A Kawashima, J. Appl. Phys. 106, 113302 (2009)

    ADS  Article  Google Scholar 

  24. 24.

    H R Griem, Spectral line broadening in plasmas (Academic Press, New York, 1974)

    Google Scholar 

  25. 25.

    G Bekefi, Principles of laser plasmas (Wiley-Interscience, New York, 1976)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bhupesh Kumar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mondal, A., Kumar, B., Singh, R.K. et al. Dynamics of the multispecies colliding plasmas of different atomic masses. Pramana - J Phys 95, 156 (2021). https://doi.org/10.1007/s12043-021-02196-9

Download citation

Keywords

  • Laser plasma
  • fast imaging
  • colliding plasmas

PACS Nos

  • 61.46.−w
  • 61.46.Bc
  • 61.46.Df
  • 61.46.Hk
  • 52.38.−r
  • 52.38.Mf