Skip to main content

Non-inertial effects on Klein–Gordon oscillator under a scalar potential using the Kaluza–Klein theory

Abstract

The Klein–Gordon (KG) oscillator under uniform rotation in the presence of a scalar potential S(r) introduced by modifying the mass term \(m \rightarrow m+ S(r)\) in the background of a magnetic cosmic string space–time using the Kaluza–Klein theory (KKT) is analysed. We see that the energy eigenvalues and eigenfunction depend on the global parameters characterising the space–time, the scalar potential and the gravitational analogue of the Aharonov–Bohm effect. Furthermore, the angular frequency of the oscillator depends on the quantum numbers of the system which shows a quantum effect.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Th Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys) K 1, 966 (1921)

    Google Scholar 

  2. 2.

    Th Kaluza, Int. J. Mod. Phys. D 27, 1870001 (2018)

    ADS  Article  Google Scholar 

  3. 3.

    O Klein, Mag. Phys. 37, 895 (1926)

    ADS  Google Scholar 

  4. 4.

    O Klein, Nature 118, 516 (1927)

    ADS  Article  Google Scholar 

  5. 5.

    T Muta, An introduction to Kaluza–Klein theories edited by H C Lee (World Scientific Publishing Co. Pvt. Ltd, Singapore, 1984)

    Google Scholar 

  6. 6.

    Y Aharonov and D Bohm, Phys. Rev. 115, 485 (1959)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    V B Bezerra, J. Math. Phys. 30, 2895 (1989)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    M Peskin and A Tonomura, Lect. Notes Phys. (Springer, Berlin, Germany, 1989) Vol. 340

    Google Scholar 

  9. 9.

    C Furtado, F Moraes and V B Bezerra, Phys. Rev. D 59, 107504 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    C Furtado, V B Bezerra and F Moraes, Mod. Phys. Lett. A 15, 253 (2000)

    ADS  Article  Google Scholar 

  11. 11.

    F Ahmed, Mod. Phys. Lett. A 36, 2150004 (2021)

    ADS  Article  Google Scholar 

  12. 12.

    E V B Leite, H Belich and K Bakke, Adv. High Energy Phys. 2015, 925846 (2015)

    Article  Google Scholar 

  13. 13.

    E V B Leite, H Belich and R L L Vitória, Adv. High Energy Phys. 2019, 6740360 (2019)

    Article  Google Scholar 

  14. 14.

    E V B Leite, R L L Vitória and H Belich, Mod. Phys. A 34, 1950319 (2019)

    ADS  Google Scholar 

  15. 15.

    J Carvalho, A M de M Carvalho, E Cavalcante and C Furtado, Eur. Phys. J. C 76, 365 (2016)

    ADS  Article  Google Scholar 

  16. 16.

    E V B Leite, H Belich and R L L Vitória, Braz. J. Phys. 50, 744 (2020)

    ADS  Article  Google Scholar 

  17. 17.

    F Ahmed, Eur. Phys. J. C 80, 211 (2020)

    ADS  Article  Google Scholar 

  18. 18.

    F Ahmed, Adv. High Energy Phys. 2020, 8107025 (2020)

    Google Scholar 

  19. 19.

    F Ahmed, Sci. Rep. 11, 1742 (2021)

    ADS  Article  Google Scholar 

  20. 20.

    I M Benn and R W Tucker, J. Phys. A : Math. Gen. 16, L123 (1983)

    ADS  Article  Google Scholar 

  21. 21.

    G German, Class. Quantum Grav. 2, 455 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Y-S Wu and A Zee, J. Math. Phys. 25, 2696 (1984)

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    P Ellicott and D J Toms, Class. Quantum Grav. 6, 1033 (1989)

    ADS  Article  Google Scholar 

  24. 24.

    R Delbourgo, S Twisk and R B Zhang, Mod. Phys. Lett. A 3, 1073 (1988)

    ADS  Article  Google Scholar 

  25. 25.

    R Delbourgo and R B Zhang, Phys. Rev. D 38, 2490 (1988)

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    K Bakke, A Yu Petrov and C Furtado, Ann. Phys. 327, 2946 (2012)

    ADS  Article  Google Scholar 

  27. 27.

    S Baskal and H Kuyrukcu, Gen. Relat. Gravit. 45, 359 (2013)

    ADS  Article  Google Scholar 

  28. 28.

    S Ichinose, Phys. Rev. D 66, 104015 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    A Macias and H Dehnen, Class. Quantum Grav. 8, 203 (1991)

    ADS  Article  Google Scholar 

  30. 30.

    F W Hehl and W-T Ni, Phys. Rev. D 42, 2045 (1990)

    ADS  Article  Google Scholar 

  31. 31.

    K Bakke, Phys. Lett. A 274, 4642 (2010)

    ADS  Article  Google Scholar 

  32. 32.

    P Strange and L H Ryder, Phys. Lett. A 380, 3465 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  33. 33.

    R L L Vitória and K Bakke, Eur. Phys. J. C 78, 175 (2018)

    ADS  Article  Google Scholar 

  34. 34.

    L B Castro, Eur. Phys. J. C 76, 61 (2016)

    ADS  Article  Google Scholar 

  35. 35.

    L C N Santos and C C Barros Jr, Eur. Phys. J. C 78, 13 (2018)

    ADS  Article  Google Scholar 

  36. 36.

    M Hosseinpour and H Hassanabadi, Eur. Phys. J. Plus 130, 236 (2015)

    Article  Google Scholar 

  37. 37.

    R L L Vitória, Eur. Phys. J. C 79, 844 (2019)

    ADS  Article  Google Scholar 

  38. 38.

    K Bakke, Gen. Relativ. Grav. 45, 1847 (2013)

    ADS  Article  Google Scholar 

  39. 39.

    F Ahmed, Chin. J. Phys. 66, 587 (2020)

    Article  Google Scholar 

  40. 40.

    E R F Medeiros and E R B de Mello, Eur. Phys. J. C 72, 2051 (2012)

    ADS  Article  Google Scholar 

  41. 41.

    F Ahmed, Int. J. Geom. Meth. Mod. Phys. 17, 2050138 (2020)

    Article  Google Scholar 

  42. 42.

    K Bakke and H Belich, Int. J. Mod. Phys. A 35, 20500023 (2020)

    Google Scholar 

  43. 43.

    K Bakke, V B Bezerra and R L L Vitória, Int. J. Mod. Phys. A 35, 2050129 (2020)

    ADS  Article  Google Scholar 

  44. 44.

    H F Mota and K Bakke, Gen. Relativ. Grav. 49, 104 (2017)

    ADS  Article  Google Scholar 

  45. 45.

    A V D M Maia and K Bakke, Eur. Phys. J. C 79, 551 (2019)

    ADS  Article  Google Scholar 

  46. 46.

    K Bakke, Eur. Phys. J. Plus 134, 546 (2019)

    Article  Google Scholar 

  47. 47.

    K Bakke, Eur. Phys. J. Plus 127, 82 (2012)

    ADS  Article  Google Scholar 

  48. 48.

    B-Q Wang, Z-W Long, C-Y Long and S-R Wu, Int. J. Mod. Phys. A 33, 1850158 (2018)

    ADS  Article  Google Scholar 

  49. 49.

    L C N Santos and C C Barros Jr, Int. J. Mod. Phys. A 33, 1850122 (2018)

    ADS  Article  Google Scholar 

  50. 50.

    E V B Leite, H Belich and R L L Vitória, Mod. Phys. Lett. A 35, 2050283 (2020)

    ADS  Article  Google Scholar 

  51. 51.

    F Ahmed, Int. J. Mod. Phys. A 35, 2050101 (2020)

    ADS  Article  Google Scholar 

  52. 52.

    J R Letaw et al, Phys. Rev. D 22, 1345 (1980)

    ADS  MathSciNet  Article  Google Scholar 

  53. 53.

    J R Letaw, Phys. Rev. D 23, 1709 (1981)

    ADS  MathSciNet  Article  Google Scholar 

  54. 54.

    J S Bell et al, Nucl. Phys. Rev. B 212, 131 (1983)

    ADS  Article  Google Scholar 

  55. 55.

    E T Akhmedov et al, JETP Lett. 86, 615 (2007)

    ADS  Article  Google Scholar 

  56. 56.

    E T Akhmedov et al, Int. J. Mod. Phys. A 22, 4797 (2007)

    ADS  Article  Google Scholar 

  57. 57.

    A Vilenkin, Phys. Rep. 121, 263 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  58. 58.

    A Vilenkin and E P S Shellard, Strings and other topological defects (Cambridge University Press, Cambridge, 1994)

    MATH  Google Scholar 

  59. 59.

    L D Landau and E M Lifshitz, The classical theory of fields, Course of theoretical physics (Elsevier, 1980) Vol. 2

  60. 60.

    K Bakke, Ann. Phys. (N.Y.) 346, 51 (2014)

    ADS  Article  Google Scholar 

  61. 61.

    W Y P Hwang and T Y Wu, Relativistic quantum mechanics and quantum fields (World Scientific Publishing Co. Ptv. Ltd., Singapore, 1991)

    MATH  Google Scholar 

  62. 62.

    W Greiner, Relativistic quantum mechanics: Wave equations (Springer-Verlag, Berlin, Germany, 2000)

    MATH  Book  Google Scholar 

  63. 63.

    A Boumali and N Messai, Can. J. Phys. 92, 1460 (2014)

    ADS  Article  Google Scholar 

  64. 64.

    M K Bahar and F Yasuk, Adv. High Energy Phys. 2013, 814985 (2013)

    Article  Google Scholar 

  65. 65.

    C Alexandrou, P de Forcrand and O Jahn, Nucl. Phys. B (Proc. Suppl.) 119, 667 (2003)

    ADS  Article  Google Scholar 

  66. 66.

    F Ahmed, Adv. High Energy Phys. 2020, 5691025 (2020)

    Google Scholar 

  67. 67.

    A Ronveaux, Heun’s differential equations (Oxford University Press, Oxford, 1995)

    MATH  Google Scholar 

  68. 68.

    S Y Slavyanov and W Lay, Special functions: A unified theory based in singularities (Oxford University Press, New York, 2000)

    MATH  Google Scholar 

  69. 69.

    G B Arfken and H J Weber, Mathematical methods for physicists (Elsevier Academic Press, London, 2005)

    MATH  Google Scholar 

  70. 70.

    A L C de Oliveira and E R Bezerra de Mello, Class. Quantum Grav. 23, 5249 (2006)

    ADS  Article  Google Scholar 

  71. 71.

    M S Cunha, C R Muniz, H R Christiansen and V B Bezerra, Eur. Phys. J. C 76, 512 (2016)

    ADS  Article  Google Scholar 

  72. 72.

    M G Sagnac, C. R. Acad. Sci. (Paris) 157, 708 (1913)

    Google Scholar 

  73. 73.

    M G Sagnac, C R. Acad. Sci. (Paris) 157, 1410 (1913)

    Google Scholar 

  74. 74.

    E J Post, Rev. Mod. Phys. 39, 475 (1967)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Faizuddin Ahmed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F. Non-inertial effects on Klein–Gordon oscillator under a scalar potential using the Kaluza–Klein theory. Pramana - J Phys 95, 159 (2021). https://doi.org/10.1007/s12043-021-02193-y

Download citation

Keywords

  • Kaluza–Klein theory
  • relativistic wave equation
  • Aharonov–Bohm effect
  • special functions

PACS Nos

  • 03.65.-w
  • 03.65.Pm
  • 03.65.Ge
  • 11.27.+d
  • 04.50.Cd