Skip to main content

Use of visible pulsed photoacoustic technique for the non-destructive measurements of absorption coefficients, thermal diffusion and viscosity properties of natural and clay-blended rubber nanocomposites


The paper reports the use of visible 532 nm wavelength of 7 nS pulse obtained from Q-switched Nd:YAG laser at 10 Hz repetition-based time-domain photoacoustic spectroscopy for measuring the effect of carbon and inorganic fillers blending in natural rubber (NR)/chlorobutyl rubber (CIIR). All the measurements were carried out in the indigenously designed solid photoacoustic (PA) cell of \(5 \times 5 \times 6 \,\hbox {cm}^{{3}}\) made of aluminum. A pre-polarised microphone of 50 mV/Pa responsivity coupled with a pre-amplifier was used as the sensor. The time-domain PA signal was recorded using a 200 MHz oscilloscope. The time-domain signal was converted into frequency-domain signal using indigenously designed data acquisition software developed using lab view software. The experimental data were also used to measure the absorption coefficients in the \(1.672\hbox {--}4.48 \,\hbox {cm}^{{-1}}\) range. The absorption coefficient value varies with respect to the variation of clay percentage in the rubber matrix. We also calculated the thermal diffusivity, thermal diffusion coefficient and penetration depth as \(1.0405\hbox {--}1.0698 \times 10^{\mathrm {-5}}\,\hbox {cm}^{\mathrm {2}}~\hbox {s}^{{-1}}\), \(8.165\hbox {--}8.602 \,\hbox {cm}^{{-1}}\), \(1162\hbox {--}1224.6 \,\mu \hbox {m}\), respectively. Finally, we have ascertained the effect of fillers on the viscosity of natural and chlorobutyl rubber samples using Einstein–Guth–Gold equation and determined the size of the filler particles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    A Das, K W Stockelhuber, Polymer 49, 5276 (2008)

    Article  Google Scholar 

  2. 2.

    Charles E Carraher Jr, Introduction to polymer chemistry, 2\(\text{nd}\) Edn (CRC Press, 2010) chapters 1–2, pp. 1–21 and 23–48

  3. 3.

    Wolfram Schnabel, Polymers and light; Fundamentals and technical applications,1st Edn (Wiley-VCH, 2007), Part 1, Chap. 1, pp. 5–41

  4. 4.

    P K Chattopadhyay, N C Das and S Chattopadhyay, Composites Part A1049 (2011)

  5. 5.

    S Rao, R K Mishra, S Thomas, N Kalarikkal and H J Maria, Carbon-Based nanofillers and their rubber nanocomposites: Fundamentals and applications (Elsevier, 2019), ISBN: 978-0-12-817342-8

  6. 6.

    A Varamesh and M Abdollahi, Polymer Sci. 55, 115 (2013)

    Google Scholar 

  7. 7.

    J Besson and S Schilt, Spectrochim. Acta Part A 60, 3449 (2004)

    Article  ADS  Google Scholar 

  8. 8.

    M Ahmadi and A Shojaei, Thermochim. Acta 566, 238 (2013)

    Article  Google Scholar 

  9. 9.

    J Karger-Kocsis and S Felho, J. Appl. Polym. Sci. 108, 724 (2008)

    Article  Google Scholar 

  10. 10.

    S Choi and C Nah, Polym. Int52, 23 (2003)

    Article  Google Scholar 

  11. 11.

    J Bergstrom and M C Boyce, Rubber Chem. Tech. 72, 633 (1999)

    Article  Google Scholar 

  12. 12.

    M A Lo\(^{\prime }\)pez-Manchado and J Biagiotti, Appl. Polym. Sci92, 3394 (2004)

  13. 13.

    A Rosencwaig, Opt. Commun7, 305 (1973)

    Article  ADS  Google Scholar 

  14. 14.

    K S Rao and A K Chaudhary, Sensors Actuators B 231, 830 (2016)

    Article  Google Scholar 

  15. 15.

    K S Rao and A K Chaudhary, Opt. Laser Technol. 109, 149 (2019)

    Article  ADS  Google Scholar 

  16. 16.

    A F El-Sherif and H S Ayoub, Opt. Laser Technol98, 385 (2018)

    Article  ADS  Google Scholar 

  17. 17.

    R O Carter and M C Paputa Peck, Appl. Spectrosc. 43, 1350 (1989)

    Article  ADS  Google Scholar 

  18. 18.

    M Alexandre and P Dubois, Mater. Sci. Eng. R Report 28, 1 (2000)

    Article  Google Scholar 

  19. 19.

    D Yue, Y Liu and S Zengmin, J. Mater. Sci41, 2541 (2006)

    Article  ADS  Google Scholar 

  20. 20.

    A K Bhowmick, Rubber Chem. Technol53, 960 (1980)

    Article  Google Scholar 

  21. 21.

    Y-P Sung and K Fu, Acc. Chem. Res35, 1069 (2002)

    Google Scholar 

  22. 22.

    J Karger Kocsis and C M Wu, Polym. Eng. Sci. 4, 1083 (2004)

    Article  Google Scholar 

  23. 23.

    A KBhowmick, Current topics in elastomers research, 1st Edn (Taylor & Francis Group, New York, 2008)

    Book  Google Scholar 

  24. 24.

    S Bhattacharyya and C Sinturel, Mater. Carbon 46, 1037 (2008)

    Article  Google Scholar 

  25. 25.

    M Abdollahi, Iran. Polym. J7, 519 (2008)

    Google Scholar 

  26. 26.

    S Thomas and R Stephen, Rubber nanocomposites, preparation, properties and applications, 1st Edn (Wiley, Singapore, 2010)

    Google Scholar 

  27. 27.

    N F Leite and N Cella, J. Appl. Phys61, 3025 (1987)

    Article  ADS  Google Scholar 

  28. 28.

    A Rosencwaig and A Gersho, J. Appl. Phys. 47, 64 (1976)

    Article  ADS  Google Scholar 

  29. 29.

    M J Adams and G F Kirkbright, Anal. Opt. Spec102, 678 (1977)

    Google Scholar 

  30. 30.

    N Takabatake, T Kobayashi, Y Yaki and T Izumi, Elect. Comm86, 1100 (2003)

    Google Scholar 

  31. 31.

    J A Balderas-Lopez and A Mandelis, J. Appl. Phys90, 3296 (2001)

    Article  ADS  Google Scholar 

  32. 32.

    M Priya, B S Satish Rao, S Roy and K K Mahato, Spectrochim. Acta A 127, 85 (2014)

    Article  ADS  Google Scholar 

  33. 33.

    Alias Bin Othman, J. Nat. Rubb. Res3, 7 (1988)

    Google Scholar 

Download references


The authors gratefully acknowledge the financial support provided by the DRDO, Ministry of Defense, and Govt. of India under ACRHEM Phase–III No. ERIP/ER/1501138/M/01/319/D (R&D). They also express their sincere thanks to Prof. K K Mahato, School of Life Science, Manipal University for valuable discussion on acoustic velocity measurements.

Author information



Corresponding author

Correspondence to A K Chaudhary.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumari, A., Maria, H.J., Chaudhary, A.K. et al. Use of visible pulsed photoacoustic technique for the non-destructive measurements of absorption coefficients, thermal diffusion and viscosity properties of natural and clay-blended rubber nanocomposites. Pramana - J Phys 95, 160 (2021).

Download citation


  • Rubber
  • Nd:YAG laser
  • photoacoustic effect
  • thermal diffusivity
  • filler


  • 43.62.Fi
  • 43.38.Zp
  • 78.47.+p
  • 07.60.–J
  • 65.40.–b