Skip to main content
Log in

Critical thickness problem for tetra-anisotropic scattering in the reflected reactor system

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Critical thicknesses are calculated in reflected systems for high-order anisotropic scattering by using neutron transport theory. The anisotropic systems are taken into account from isotropic to tetra-anisotropic scattering terms one by one. Neutron transport equation is solved by using the Legendre polynomial \(\hbox {P}_{\mathrm {N}}\) method and then Chebyshev polynomial \(\hbox {T}_{\mathrm {N}}\) method. The eigenfunctions and eigenvalues are calculated for different numbers of secondary neutrons (c) up to the ninth-order term in the iteration of the two methods. The Marshak boundary condition is applied to find critical thickness for the reflected reactor system. Thus, a wide-range critical thickness spectrum has been generated, depending on the number of secondary neutrons, anisotropic scattering coefficients and different range of reflection coefficients. Finally, the calculated critical thickness values are compared with those in the literature and it is observed that our results are in agreement with them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C Tezcan and C Yildiz, J. Quant. Spectrosc. Radiat. Transf. 53, 687 (1995)

    Article  ADS  Google Scholar 

  2. A Bülbül, H Demir, F Anli and H Öztürk, Nucl. Eng. Des. 241, 1454 (2011)

    Article  Google Scholar 

  3. H Öztürk and S Güngör, Ann. Nucl. Energy 36, 575(2009)

    Article  Google Scholar 

  4. A Yilmazer, Ann. Nucl. Energy 34, 743 (2007)

    Article  Google Scholar 

  5. C Yildiz, J. Phys. D. Appl. Phys. 32, 317 (1999)

    Article  ADS  Google Scholar 

  6. R G Türeci, Kerntechnik 73, 171 (2008)

    Article  Google Scholar 

  7. R G Tureci, Nucl. Eng. Technol. 52, 700 (2019)

    Article  Google Scholar 

  8. R G Türeci, Kerntechnik. 80, 583 (2015)

    Article  Google Scholar 

  9. M Ç Güleçyüz, R G Türeci and C Tezcan, Kerntechnik. 71, 149 (2006)

    Article  Google Scholar 

  10. M A Atalay, Prog. Nucl. Energy 31, 229 (1997)

    Article  Google Scholar 

  11. H Öztürk, Kerntechnik. 77, 453 (2012)

    Article  Google Scholar 

  12. F Anli, S Güngör, F Yaşa and H Öztürk, J. Quant. Spectrosc. Radiat. Transf. 101, 135 (2006)

    Article  ADS  Google Scholar 

  13. R G Türeci, Kerntechnik. 80, 583 (2015)

    Article  Google Scholar 

  14. J J Duderstadt, W R Martin and R Aronson, Phys. Today 35, 65 (1982)

    Article  Google Scholar 

  15. J Mika, Nucl. Sci. Eng. 11, 415 (1961)

    Article  Google Scholar 

  16. D C Sahni, B Dahl and N G Sjöstrand, Ann. Nucl. Energy. 24, 135 (1997)

    Article  Google Scholar 

  17. E E Lewis and W F Miller, Computational methods of neutron transport (Wiley, New York, 1984)

  18. G Arfken and Y K Pan, Am. J. Phys. 39, 461 (1971)

    Article  ADS  Google Scholar 

  19. B Davison and J B Sykes, Neutron transport theory (Oxford University Press, 1957)

  20. E İnönü, Transp. Theory Stat. Phys. 3, 137 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  21. F Yaşa, F Anli and S Güngör, J. Quant. Spectrosc. Radiat. Transf. 97, 51 (2006)

    Article  ADS  Google Scholar 

  22. H G Kaper, A J Lindeman and G K Leaf, Nucl. Sci. Eng. 54, 94 (1974)

    Article  Google Scholar 

  23. C E Lee and M P Dias, Ann. Nucl. Energy 11, 515 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments on the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halide Koklu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koklu, H., Ozer, O. Critical thickness problem for tetra-anisotropic scattering in the reflected reactor system. Pramana - J Phys 95, 190 (2021). https://doi.org/10.1007/s12043-021-02190-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02190-1

Keywords

PACS Nos

Navigation