Skip to main content

New stochastic solutions for a new extension of nonlinear Schrödinger equation

Abstract

In this article, we applied the unified solver method to extract stochastic solutions of a new stochastic extension of nonlinear Schrödinger equation. This solver gives the closed formula in explicit form. The acquired stochastic solutions may be applicable for explaining some phenomena in many fields of applied sciences. The presented results illustrate that the proposed solver is efficient and adequate. Moreover, the constraint conditions are utilised to verify the existence of solutions. Chi-square statistical distribution is chosen to represent the dispersion random input. In order to illustrate the dynamical behaviour of random solutions, the expectation value and their variance are depicted graphically using suitable parameters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    H M Baskonus and H Bulut, Waves Random Complex Media 26, 613 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    K Hosseini, D Kumar, M Kaplan and E Y Bejarbane, Commun. Theor. Phys. 68, 761 (2017)

    ADS  Article  Google Scholar 

  3. 3.

    M A E Abdelrahman, Nonlinear Engineering 7(4), 279 (2018)

    ADS  Article  Google Scholar 

  4. 4.

    S Z Hassan and M A E Abdelrahman, Pramana – J. Phys. 91: 67 (2018)

  5. 5.

    S Z Hassan and M A E Abdelrahman, Int. J. Nonlinear Sci. Numer. Simul. 20(3–4), 303 (2019).

    MathSciNet  Article  Google Scholar 

  6. 6.

    M A E Abdelrahman and N F Abdo, Phys. Scr. 95(4), 045220 (2020)

  7. 7.

    W Gao, B Ghanbari, H Günerhan and H M Baskonus, Mod. Phys. Lett. B 34(03), 2050034 (2020)

    ADS  Article  Google Scholar 

  8. 8.

    B Ghanbari and C Kuo, Eur. Phys. J. Plus 134, 334 (2019)

    Article  Google Scholar 

  9. 9.

    A E Abouelregal, Math. Methods Appl Sci. 43(11), 6746 (2020)

    MathSciNet  Article  Google Scholar 

  10. 10.

    A E Abouelregal, J. Mol. Eng. Mater. 8, 2050003 (2020)

    Article  Google Scholar 

  11. 11.

    M A E Abdelrahman and M A Sohaly, Eur. Phys. J. Plus 132, 339 (2017)

    Article  Google Scholar 

  12. 12.

    M A E Abdelrahman and M A Sohaly, Results Phys. 9, 344 (2018)

    ADS  Article  Google Scholar 

  13. 13.

    M A E Abdelrahman and M A Sohaly, Indian J. Phys. 93, 903 (2019)

    ADS  Article  Google Scholar 

  14. 14.

    Y F Alharbi, M A E Abdelrahman, M A Sohaly and M Inc, The Eur. Phys. J. Plus 135, 368 (2020)

    Article  Google Scholar 

  15. 15.

    A Kundu, A Mukherjee and T Naskar, Proc. R. Soc. A 470, 20130576 (2014)

    ADS  Article  Google Scholar 

  16. 16.

    X Wen, Proc. Rom. Acad. Ser. A 18(3), 191 (2017)

    MathSciNet  Google Scholar 

  17. 17.

    M Ekici, A Sonmezoglua, A Biswas and M R Belic, Chin. J. Phys. 57, 72 (2019)

    Article  Google Scholar 

  18. 18.

    A Biswas, Y Yildirim, E Yasar, Q Zhou, S P Moshokoa and M Belic, Chin. J. Phys. 56, 1990 (2018)

    Article  Google Scholar 

  19. 19.

    Walck Christian, Hand-book on statistical distributions for experimentalists (University of Stockholm, 2007)

  20. 20.

    M A E Abdelrahman and H AlKhidhr, Phys. Scr. 95, 065212 (2020)

  21. 21.

    J R Taylor, Optical solitons: Theory and experiment (Cambridge Univ. Press, 1992)

  22. 22.

    M Saito, S Watanabe and H Tanaka, J. Phys. Soc. Jpn. 53, 2304 (1984)

    ADS  Article  Google Scholar 

  23. 23.

    M Shats, H Punzmann and H Xia, Phys. Rev. Lett. 104, 104503 (2010)

  24. 24.

    H Bailung, S K Sharma and Y Nakamura, Phys. Rev. Lett. 107, 255005 (2011)

  25. 25.

    B Kibler, J Fatome, C Finot, G Millot, F Dias, G Genty, N Akhmediev and J M Dudley, Nature Phys. 6, 790 (2010)

    ADS  Article  Google Scholar 

  26. 26.

    P Pathak, S K Sharma, Y Nakamura and H Bailung, Phys. Lett. A 381, 4011 (2017)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A E Abdelrahman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alharbi, Y.F., Sohaly, M.A. & Abdelrahman, M.A.E. New stochastic solutions for a new extension of nonlinear Schrödinger equation. Pramana - J Phys 95, 157 (2021). https://doi.org/10.1007/s12043-021-02189-8

Download citation

Keywords

  • Stochastic solver
  • stochastic solutions
  • statistics distribution
  • chi-square
  • physical applications

PACS Nos

  • 02.30.Jr
  • 02.50.Fz
  • 02.90.+p
  • 04.20.Jb