Skip to main content
Log in

Improved tests for non-linearity using network-based statistics and surrogate data

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We report the results of studies of improved tests for non-linearity based on time series-induced network statistics and surrogate data. We compare results from the network-based statistics with the earlier tests available in the literature and demonstrate the superiority of these tests over the previous tests for several systems. The method we propose is based on constructing a network from a time series and using easily computable parameters of the resulting network such as the average path length, graph density and clustering coefficient as test statistics for the surrogate data test. These statistics are tested for their ability to distinguish between nonlinear processes and linear noise processes, using surrogate data tests on time series obtained from the Rössler system, the Lorenz system, the Henon map, the logistic map and an actual experimental time series of wind speed data, and compared with popularly used time series associated statistics. The network-based statistics are found to distinguish between the nonlinear time series and surrogates derived from the data to a higher degree than the commonly used time series-based statistics, even in the presence of measurement noise and dynamical noise. These statistics may thus prove to be of value in distinguishing between time series derived from nonlinear processes and time series obtained from linearly correlated stochastic processes even in the presence of measurement noise and dynamical noise. The results also show that the efficiency of the network parameters is not exacerbated by the presence of outliers in the given time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E N Lorenz, J. Atmos. Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  2. N  Packard, J  Crutchfield, J  Farmer and R  Shaw, Phys. Rev. Lett. 45, 712 (1980)

    Article  ADS  Google Scholar 

  3. F  Takens, in Lecture notes in mathematics (Springer, Berlin Heidelberg, 1981) pp. 366–381

    Google Scholar 

  4. T  Sauer, J A Yorke and M  Casdagli, J. Stat. Phys. 65, 579 (1991)

    Article  ADS  Google Scholar 

  5. A  Osborne and A  Provenzale, Physica D 35, 357 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  6. J  Theiler, Phys. Lett. A 155, 480 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. J  Theiler, S  Eubank, A  Longtin, B  Galdrikian and J  Doyne Farmer, Physica D 58, 77 (1992)

    Article  ADS  Google Scholar 

  8. G  Lancaster, D  Iatsenko, A  Pidde, V  Ticcinelli and A  Stefanovska, Phys. Rep. 748, 1 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  9. S  Chen and P  Shang, Physica A 537, 122716 (2020)

    Article  Google Scholar 

  10. Y  Hirata, M  Shiro and J M Amigó, Entropy-switz. 21, 713 (2019)

    Article  ADS  Google Scholar 

  11. Y  Sun, P  Shang, J  He and M  Xu, Fluct. Noise Lett. 17, 1850035 (2018)

    Article  ADS  Google Scholar 

  12. M  Chavez and B  Cazelles, Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  13. Y  Hirata and M  Shiro, Phys. Rev. E 100, 022203 (2019)

    Article  ADS  Google Scholar 

  14. J  Zhang and M  Small, Phys. Rev. Lett. 96, 238701 (2006)

    Article  ADS  Google Scholar 

  15. Y  Yang and H  Yang, Physica A 387, 1381 (2008)

    Article  ADS  Google Scholar 

  16. Z  Gao and N  Jin, Phys. Rev. E 79, 066303 (2009)

    Article  ADS  Google Scholar 

  17. L  Lacasa, B  Luque, F  Ballesteros, J  Luque and J C Nuño, Proc. Natl. Acad. Sci. 105, 4972 (2008)

    Article  ADS  Google Scholar 

  18. N  Marwan, J F Donges, Y  Zou, R V Donner and J  Kurths, Phys. Lett. A 373, 4246 (2009)

    Article  ADS  Google Scholar 

  19. C W Kulp, J M Chobot, H R Freitas and G D Sprechini, Chaos 26, 073114 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. L  Lacasa and R  Toral, Phys. Rev. E 82, 036120 (2010)

    Article  ADS  Google Scholar 

  21. W J Bosl, H  Tager-Flusberg and C A Nelson, Sci. Rep. 8, 6828 (2018)

    Article  ADS  Google Scholar 

  22. Y  Zou, R V Donner, N  Marwan, J F Donges and J  Kurths, Phys. Rep. 787, 1 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. B A Gonçalves, L  Carpi, O A Rosso, M G Ravetti and A  Atman, Physica A 525, 606 (2019)

  24. G  Iacobello, S  Scarsoglio and L  Ridolfi, Phys. Lett. A 382, 1 (2018)

  25. W  Fang, X  Gao, S  Huang, M  Jiang and S  Liu, Open Phys. 16, 346 (2018)

    Article  Google Scholar 

  26. K  Liu, T  Weng, C  Gu and H  Yang, Physica A 538, 122952 (2020)

    Article  Google Scholar 

  27. R  Jacob, K  Harikrishnan, R  Misra and G  Ambika, arXiv:1508.02724 (2015)

  28. X  Luo, T  Nakamura and M  Small, Phys. Rev. E 71, 026230 (2005)

    Article  ADS  Google Scholar 

  29. T  Schreiber and A  Schmitz, Physica D 142, 346 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  30. G  Pavlos, M  Athanasiu, D  Kugiumtzis, N  Hatzigeorgiu, A  Rigas and E  Sarris, Nonlin. Processes Geophys. 6, 51 (1999)

    Article  ADS  Google Scholar 

  31. T  Maiwald, E  Mammen, S  Nandi and J  Timmer, in Understanding complex systems (Springer, Berlin Heidelberg, 2008) pp. 41–74

    Google Scholar 

  32. X  Xu, J  Zhang and M  Small, Proc. Natl. Acad. Sci. 105, 19601 (2008)

    Article  ADS  Google Scholar 

  33. T  Sauer and J A Yorke, Int. J. Bifurc. Chaos 03, 737 (1993)

    Article  Google Scholar 

  34. Z-K Gao and N-D Jin, Nonlinear Anal. Real World Appl. 13, 947 (2012)

    Article  MathSciNet  Google Scholar 

  35. O  Rössler, Phys. Lett. A 57, 397 (1976)

    Article  ADS  Google Scholar 

  36. T  Schreiber and A  Schmitz, Phys. Rev. Lett. 77, 635 (1996)

    Article  ADS  Google Scholar 

  37. M  Hénon, in The theory of chaotic attractors (Springer, New York, 1976) pp. 94–102

    Book  Google Scholar 

  38. R  Sreelekshmi, K  Asokan and K  Satheesh Kumar, Ann. Geophys. 30, 1503 (2012)

    Article  ADS  Google Scholar 

  39. G  Drisya, D C Kiplangat, K  Asokan and K  Satheesh Kumar, Ann. Geophys. 32, 1415 (2014)

    Article  ADS  Google Scholar 

  40. G  Drisya, K  Asokan and K S Kumar, Renew. Energ. 119, 540 (2018)

    Article  Google Scholar 

  41. G  Drisya, P  Valsaraj, K  Asokan and K  Kumar, Int. J. Comput. Sci. Eng. 9, 362 (2017)

    Google Scholar 

  42. P  Valsaraj, D A Thumba, K  Asokan and K S Kumar, Appl. Energ. 260, 114270 (2020)

    Article  Google Scholar 

  43. M  Mannattil, H  Gupta and S  Chakraborty, ApJ 833, 208 (2016)

    Article  ADS  Google Scholar 

  44. J  Lucio, R  Valdés and L  Rodríguez, Phys. Rev. E 85, 056202 (2012)

    Article  ADS  Google Scholar 

  45. K S Kumar, C  Kumar, B  George, G  Renuka and C  Venugopal, J. Geophys. Res. 109, https://doi.org/10.1029/2002ja009768 (2004)

  46. S J Guastello and R A Gregson, Nonlinear dynamical systems analysis for the behavioral sciences using real data (CRC Press, 2016)

Download references

Acknowledgements

The authors wish to thank the National Renewable Energy Laboratory (http://www.nrel.gov), USA, for making their data available and the campus computing facility of the University of Kerala under the DST-PURSE programme for providing computational facilities. They are also grateful to Dr Drisya Alex Thumba for computational assistance. The first author (MCM) would like to acknowledge the financial assistance through the e-grants scheme of the Government of Kerala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Satheesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallika, M.C., Asokan, K., Kumar, K.S.A. et al. Improved tests for non-linearity using network-based statistics and surrogate data. Pramana - J Phys 95, 141 (2021). https://doi.org/10.1007/s12043-021-02181-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02181-2

Keywords

PACS Nos

Navigation