Skip to main content
Log in

Prediction of some thermophysical properties of \(\hbox {SF}_{6}\) at low pressure

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, some thermophysical properties at low pressure of sulphur hexafluoride (\(\hbox {SF}_{6}\)) fluid are modelled and predicted. Also, by comparing the obtained results with experimental data, the correlation performance of virial coefficients to predict thermodynamic properties over a wide temperature range is evaluated. Studied properties consist of Joule–Thomson coefficient, enthalpy, deviation function, fugacity coefficient, thermal expansion, Boyle temperature and Boyle volume. The studied correlation function is the one suggested by Zarkova et al and compared with correlation of Meng et al. The obtained results show that the correlation equation presented has a good ability to predict the thermophysical properties of sulpur hexafluoride and its deviation from the ideal state over a wide range of temperatures. Average absolute deviations (AAD) of thermophysical properties of \(\hbox {SF}_{6}\) calculated by this approach is mainly below \(5\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M Abbaspour and S Naghipour Borj, Fluid Phase Equil. 333, 1 (2012)

    Article  Google Scholar 

  2. G Scalabrin, L Bettio, P Marchi and P Stringari, J. Phys. Chem. Ref. Data 36, 617 (2007)

    Article  ADS  Google Scholar 

  3. K E MacCormack and W G Schneider, J. Chem. Phys. 19, 849 (1951)

    Article  ADS  Google Scholar 

  4. K E Kinney, S Xu and L S Bartell, J. Phys. Chem. 100, 6935 (1996)

    Article  Google Scholar 

  5. B Haghighi, A Maghari and M Najafi, J. Phys. Soc. Jpn. 67, 3086 (1998)

    Article  ADS  Google Scholar 

  6. J J Hurly, D R Defibaugh and M R Moldover, Int. J. Thermophys. 21, 739 (2000)

    Article  Google Scholar 

  7. J Moghadasi, M M Papari, A Nekoie and J V Sengers, Chem. Phys. 306, 229 (2004)

    Article  Google Scholar 

  8. S Oh, Fluid Phase Equilib. 271, 53 (2008)

    Article  Google Scholar 

  9. D Dellis and J Samios, Fluid Phase Equilib. 291, 81 (2010)

    Article  Google Scholar 

  10. D J Chartrand, R J Le Roy, A Kumar and W J Meath, J. Chem. Phys. 98,5668 (1993)

    Article  ADS  Google Scholar 

  11. M Najafi, Russian J. Phys. Chem. \(A\) (2021) (in press)

  12. Y S Wei and R J Sadus, AIChE J. 46, 169 (2000)

    Article  Google Scholar 

  13. J O Valderrama, Ind. Eng. Chem. Res. 42, 1603 (2003)

    Article  Google Scholar 

  14. F de J Guevara-Rodriguez, Fluid Phase Equilibria 307, 190 (2011)

  15. M J Assael, J P M Trusler and T F Tsolakis, An introduction to their prediction of thermophysical properties of fluids (Imperial College Press, London, UK, 1996)

    Book  Google Scholar 

  16. L Meng, Y-Y Duan and L Li, Fluid Phase Equilibria 226, 109 (2004)

    Article  Google Scholar 

  17. R M Gibbons, Cryogenics 14, 399 (1974)

    Article  ADS  Google Scholar 

  18. J J Martin, Ind. Eng. Chem. Fundam. 23, 454 (1984)

    Article  Google Scholar 

  19. A Vetere, Fluid Phase Equilibria 164, 49 (1999)

    Article  Google Scholar 

  20. M Ramos-Estrada, G A Iglesias-Silva, K R Hall and F Kohler, Fluid Phase Equilibria 240, 179 (2006)

    Article  Google Scholar 

  21. A H Harvey and E W Lemmon, J. Phys. Chem. Ref. Data 33, 369 (2004)

    Article  ADS  Google Scholar 

  22. J Tian, Y Gui and A Mulero, J. Phys. Chem. \(B\)114, 13399 (2010)

  23. H W Xiang, Chem. Eng. Sci. 57, 1439 (2002)

    Article  Google Scholar 

  24. E Holleran, Fluid Phase Equil. 251, 29 (2007)

    Article  Google Scholar 

  25. D X Liu and H W Xiang, Int. J. Thermophys. 24, 1667 (2003)

    Article  ADS  Google Scholar 

  26. J G Hayden and P O O’Connell, Ind. Eng. Chem. Process Des. 14, 209 (1975

    Article  Google Scholar 

  27. A Khoshsima and A Hosseini, J. Mol. Liq. 242, 625 (2017)

    Article  Google Scholar 

  28. K S Pitzer and R F Curl, J. Am. Chem. Soc. 79, 2369 (1957)

    Article  Google Scholar 

  29. J P O’Connell and J M Prausnitz, Ind. Eng. Chem. Process Des. 6, 245 (1967)

    Article  Google Scholar 

  30. C Tsonopoulos, AIChE J. 20, 263 (1974)

    Article  Google Scholar 

  31. C Tsonopoulos, AIChE J. 21, 827 (1975)

    Article  Google Scholar 

  32. R R Tarakad and R P Danner, AIChE J. 23, 685 (1977)

    Article  Google Scholar 

  33. H A Orbey, Chem. Eng. Commun. 65, 1 (1988)

    Article  Google Scholar 

  34. L A Weber, Int. J. Thermophys. 15, 461 (1994)

    Article  ADS  Google Scholar 

  35. J Tian, H Jiang and A Mulero, Phys. Chem. Chem. Phys. 21, 13070 (2019)

    Article  Google Scholar 

  36. J Tian, H Jiang and A Mulero, Phys. Chem. Chem. Phys. 21, 13109 (2019)

    Article  Google Scholar 

  37. J Tian, H Jiang and A Mulero, Phys. Chem. Chem. Phys. 22, 10360 (2020)

    Article  Google Scholar 

  38. A Boushehri, J Bzowski, J Kestin and E A Mason, J. Phys. Chem. Ref. Data 16, 445 (1987)

    Article  ADS  Google Scholar 

  39. L Zarkova and U Hohm, J. Phys. Chem. Ref. Data 31, 183 (2002)

    Article  ADS  Google Scholar 

  40. Ira Levine, Physical chemistry, 6th Edn (McGraw-Hill International Editions, 2009)

  41. L Zhou and Y Zhou, Int. J. Hydrogen Energy 26, 597 (2001)

    Article  Google Scholar 

  42. J Szarawara and A Gawdzik, Chem. Eng. Sci. 44, 1489 (1989)

    Article  Google Scholar 

  43. NIST Chemistry WebBook, http://www.nist.gov.

  44. C F Leibovici and D V Nichita, Fluid Phase Equil. 289, 94 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The author expresses his appreciation to Nuclear Fuel Cycle Research School and Nuclear Science and Technology Research Institute (NSTRI) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Najafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, M. Prediction of some thermophysical properties of \(\hbox {SF}_{6}\) at low pressure. Pramana - J Phys 95, 139 (2021). https://doi.org/10.1007/s12043-021-02172-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02172-3

Keywords

PACS Nos

Navigation