Skip to main content
Log in

Nanoporous alumina microtubes for metamaterial and plasmonic applications

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Double anodisation of aluminium microwires in an acid bath yields cylindrical nanoporous alumina with non-branching radially emanating pores. The obtained nanoporous alumina is a cylindrically anisotropic as well as a radially inhomogeneous optical medium. Detailed structural characterisation reveals that the nanopore diameter varies linearly with the radius of the aluminium microwire along the radial direction. Microcracks form on the alumina shell during the anodisation when sufficient thickness is formed due to volume expansion and stress accumulation. The formation of the microcracks can be monitored by the anodisation current which shows sudden jumps when the cracks are formed. After removing the remaining aluminium at the core of the anodised wire, the anisotropic and inhomogeneous alumina microtube is obtained. Such nanoporous alumina microtubes form unique optical waveguides and are useful for microscale heat transfer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H Masuda and K Fukuda, Science 268(5216), 1466 (1995)

    Article  ADS  Google Scholar 

  2. F Li, L Zhang and R M Metzger, Chem. Mater. 10(9), 2470 (1998)

  3. W Lee, K Nielsch and U Gösele, Nanotechnology 18(47), 475713 (2007)

    Article  ADS  Google Scholar 

  4. C T Sousa, D C Leitao, M P Proenca, J Ventura, A M Pereira and J P Araujo, Appl. Phys. Rev. 1(3), 031102 (2014)

    Article  ADS  Google Scholar 

  5. R S Virk, Study of voltage, acid concentration and temperature on nanopore structures, The Faculty and Department of Chemical and Materials Engineering, August 2008.

  6. A Santos, T Kumeria, Y Wang and D Losic, Nanoscale 6, 9991 (2014)

    Article  ADS  Google Scholar 

  7. B Sellarajan, M Sharma, S K Ghosh, H Nagaraja, H C Barshilia and P Chowdhury, Microporous Mesoporous Mater. 224, 262 (2016)

    Article  Google Scholar 

  8. X Zhao, S-K Seo, U-J Lee and K-H Lee, J. Electrochem. Soc. 154(10), C553 (2007)

    Article  Google Scholar 

  9. J Yao, Z Liu, Y Liu, Y Wang, C Sun, G Bartal, A M Stacy and X Zhang, Science 321(5891), 930 (2008)

    Article  ADS  Google Scholar 

  10. G Sharma, M V Pishko and C A Grimes, J. Mater. Sci. 42(13), 4738 (2007)

    Article  ADS  Google Scholar 

  11. S Shingubara, J. Nanopart. Res. 5, 17 (2003)

    Article  ADS  Google Scholar 

  12. S Niwa, M Eswaramoorthy, J Nair, A Raj, N Itoh, H Shoji, T Namba and F Mizukami, Science 295(5552), 105 (2002)

    Article  ADS  Google Scholar 

  13. T Mizushima, K Matsum, Appl. Catal. A Gen. 265(1), 53 (2004)

    Article  Google Scholar 

  14. W-S Chae, S-J Im, J-K Lee and Y-R Kim, Bull. Korean Chem. Soc. 26(3), 409 (2005)

    Article  Google Scholar 

  15. D Pratap, S Anantha Ramakrishna, J G Pollock and A K Iyer, Opt. Express 23(7), 9074 (2015)

  16. J G Pollock, A K Iyer, D Pratap and S Anantha Ramakrishna, J. Appl. Phys. 119(8), 083103 (2016)

  17. D Pratap, A Bhardwaj and S Anantha Ramakrishna, J. Nanophoton. 12(3), 033002 (2018)

  18. L Sacco, I Florea, M Châtelet and C-S Cojocaru, Thin Solid Films 660, 213 (2018)

    Article  ADS  Google Scholar 

  19. H Aghili, B Hashemi, M Ebrahim Bahrololoom and S A J Jahromi, Process. Appl. Ceram. 13(3), 235 (2019)

    Article  Google Scholar 

  20. C H Voon, B Y Lim, K L Foo, U Hashim, S T Sam, M K Md Arshad and A F Baharuddin, Mater. Sci. Forum 857, 281 (2016)

  21. M Pashchanka and J J Schneider, Phys. Chem. Chem. Phys. 18(9), 6946 (2016)

  22. O Jessensky, F Müller and U Gösele, Appl. Phys. Lett. 72(10), 1173 (1998)

    Article  ADS  Google Scholar 

  23. W Lee, R Ji, U Gösele and K Nielsch, Nat. Mater. 5(9), 741 (2006)

    Article  ADS  Google Scholar 

  24. N Kh Ibrayev and A K Zeinidenov, Laser Phys. Lett. 11(11), 115805 (2014)

    Article  ADS  Google Scholar 

  25. Z Rui, C Chen, Y Lu and H Ji, Chin. J. Chem Eng. 22(8), 882 (2014)

    Article  Google Scholar 

  26. A K Patra, A Dutta and A Bhaumik, J. Hazard. Mater. 201, 170 (2012)

    Article  Google Scholar 

  27. T Masuda, H Asoh, S Haraguchi and S Ono, Materials 8(3), 1350 (2015)

    Article  ADS  Google Scholar 

  28. L Vera-Londono, A Ruiz-Clavijo, O Caballero-Calero and M Martín-González, Nanoscale Adv. 2(10), 4591 (2020)

    Article  ADS  Google Scholar 

  29. K S Choudhari, P Sudheendra and N K Udayashankar, J. Porous Mater. 19(6), 1053 (2012)

    Article  Google Scholar 

  30. P Russell, Science 299(5605), 358 (2003)

    Article  ADS  Google Scholar 

  31. A Tuniz, K J Kaltenecker, B M Fischer, M Walther, S C Fleming, A Argyros and B T Kuhlmey, Nat. Commun. 4, 2706 (2013)

  32. L Yi, L Zhiyuan, H Xing, L Yisen and C Yi, RSC Adv. 2, 5164 (2012)

    Article  ADS  Google Scholar 

  33. N R Jana, L Gearheart and C J Murphy, Langmuir 17(22), 6782 (2001)

  34. Y W Wang, L D Zhang, G W Meng, X S Peng, Y X Jin and J Zhang, J. Phys. Chem. B 106(10), 2502 (2002)

    Article  Google Scholar 

  35. S Anantha Ramakrishna and T M Grzegorczyk, Physics and applications of negative refractive index materials (CRC Press, 2008)

  36. F Capolino, Theory and phenomena of metamaterials (CRC Press, 2009)

  37. M Arya, S Khandekar, D Pratap and S Anantha Ramakrishna, Heat Mass Transf. 52, 1725 (2016)

  38. S A Ramakrishna, J Ramkumar, S Khandekar and D Pratap, Microfluidic devices and methods for their preparation and use, US Patent App. 14/818,250, February 11, 2016

Download references

Acknowledgements

SAR acknowledges the Department of Science and Technology, Ministry of Science and Technology (DST) (Project No. DST/SJF/PSA-01/2011–2012) and DP thanks CSIR-India for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheeraj Pratap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratap, D., Anantha Ramakrishna, S. Nanoporous alumina microtubes for metamaterial and plasmonic applications. Pramana - J Phys 95, 136 (2021). https://doi.org/10.1007/s12043-021-02171-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02171-4

Keywords

PACS Nos

Navigation