Skip to main content
Log in

Steadily revolving flow of Sisko fluid along a stretchable boundary with non-linear radiation effects

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The heat transfer effects in rotating flow above an extensible surface immersed in a non-Newtonian fluid obeying Sisko fluid model is considered in this article. The model is widely accepted for analysing flow behaviour of many industrial liquids including lubricating greases. Thermal transport existing in the non-linear radiative heat flux is investigated. Conservation equations are simplified using boundary layer approximations before these are reduced to locally similar differential equations through appropriate transformations. We adopted a highly convenient package bvp4c of MATLAB to find numerical results for both integer and non-integer values of flow behaviour index n. Solutions are analysed graphically for diverse range of controlling parameters. Akin to the earlier works, temperature curve exhibits an inflection point in the case of relatively large wall temperature. Furthermore, wall temperature gradient vanishes for increasing values of temperature ratio parameter. Graphical results demonstrate that stretching effect combined with Sisko fluid assumption can provide considerable improvement in the cooling process of the surface, which is certainly beneficial in some technological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A W Sisko, Ind. Eng. Chem. 50, 1789 (1958)

  2. R Cortell, Appl. Math. Comput. 168, 557 (2005)

    MathSciNet  Google Scholar 

  3. F T Akyildiz, K Vajravelu, R N Mohapatra, E Sweet and R A Van Gorder, Appl. Math. Comput. 210, 189 (2009)

    MathSciNet  Google Scholar 

  4. S K Panda and R P Chhabra, J. Non-Newtonian Fluid Mech. 165, 1442 (2010)

    Article  Google Scholar 

  5. Kh S Mekheimer and M A El Kot, Appl. Math. Model. 36, 5393 (2012)

  6. R Malik, M Khan and M Mushtaq, J. Mol. Liq. 222, 430 (2016)

    Article  Google Scholar 

  7. F Ahmed and M Iqbal, Int. J. Mech. Sci. 130, 508 (2017)

    Article  Google Scholar 

  8. Y J Zhuang, H Z Yu and Q Y Zhu, Int. J. Heat Mass Transf. 115, 670 (2017)

    Article  Google Scholar 

  9. T Mahmood, Z Iqbal, J Ahmed, A Shahzad and M Khan, Res. Phys. 7, 2458 (2017)

    Google Scholar 

  10. A Hussain, M Y Malik, T Salahuddin, S Bilal and M Awais, J. Mol. Liq. 231, 341 (2017)

    Article  Google Scholar 

  11. M I Khan, S Qayyum, T Hayat, A Alsaedi and M I Khan, J. Mol. Liq. 257, 155 (2018)

    Article  Google Scholar 

  12. W Ibrahim and J Seyoum, J. Nanofluids 8, 1412 (2019)

    Article  Google Scholar 

  13. C Y Wang, ZAMP 39, 177 (1988)

    ADS  Google Scholar 

  14. V Rajeswari and G Nath, Int. J. Eng. Sci. 30, 747 (1992)

    Article  Google Scholar 

  15. R Nazar, N Amin and I Pop, Mech. Res. Commun. 31, 121 (2004)

    Article  Google Scholar 

  16. M Kumari, T Grosan and I Pop, Tech. Mech. 1, 11 (2006)

    Google Scholar 

  17. T Hayat, T Javed and M Sajid, Phys. Lett. A 372, 3264 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. T Javed, Z Abbas, M Sajid and N Ali, Int. J. Numer. Meth. Heat Fluid Flow 21, 903 (2011)

  19. J A Khan, M Mustafa and A Mushtaq, Int. J. Heat Mass Transf. 94, 49 (2016)

    Article  Google Scholar 

  20. M Turkyilmazoglu, Int. J. Mech. Sci. 90, 246 (2015)

    Article  Google Scholar 

  21. K Sreelakshmi, V Nagendramma and Sarojamma, Proc. Eng. 127, 678 (2015)

    Article  Google Scholar 

  22. R Ahmad and M Mustafa, J. Mol. Liq. 220, 635 (2016)

  23. M Mustafa and J A Khan, J. Mol. Liq. 234, 287 (2017)

    Article  Google Scholar 

  24. M Hamid, M Usman, T Zubair, R Ul Haq and W Wang, Int. J. Heat Mass Transf. 124, 706 (2018)

    Article  Google Scholar 

  25. I Waini, A Ishak and I Pop, Int. J. Heat Mass Transf. 136, 288 (2019)

    Article  Google Scholar 

  26. S Rosseland, Astrophysik and atom-theorestische-grundlagen (Springer, Berlin, 1931)

  27. M Mustafa, R Ahmad, T Hayat and A Alsaedi, Neural Comput. Appl. 29, 493 (2018)

    Article  Google Scholar 

  28. G Ibáñez, A López, I López, J Pantoja, J Moreira and O Lastres, J. Therm. Anal. Calorim. 135, 3401 (2018)

  29. Z Abdelmalek, I Khan, M W A Khan, K Rehman and E S M Sherif, J. Mater. Res. Tech. 9, 11035 (2020)

  30. M Khan, A Hafeez and J Ahmed, Physica A, https://doi.org/10.1016/j.physa.2019.124085 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Mustafa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiq, T., Mustafa, M. Steadily revolving flow of Sisko fluid along a stretchable boundary with non-linear radiation effects. Pramana - J Phys 95, 120 (2021). https://doi.org/10.1007/s12043-021-02149-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02149-2

Keywords

PACS Nos

Navigation