Skip to main content
Log in

Properties of pure neutron matter at low and high densities

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We report a new microscopic equation of state (EoS) of pure neutron matter (PNM) at zero temperature using the recent realistic two-body interaction derived in the framework of chiral perturbation theory (ChPT). The EoS is derived using the Brueckner–Bethe–Goldstone quantum many-body theory in the Brueckner–Hartree–Fock approach. We have calculated the EoS of PNM at low and high densities using LO, NLO, N\(^{2}\)LO, N\(^{3}\)LO, N\(^{4}\)LO potentials at three different values of the momentum-space cut-off \(\Lambda \) = 450, 500 and 550 MeV. It is found that the EoS is not much affected by the cut-off variations at low densities. Also the binding energy of PNM has been computed within the framework of the Brueckner–Hartree–Fock (BHF) approach plus two-body density-dependent Skyrme potential which is equivalent to three-body forces. The effect of the two-body density-dependent Skyrme potential is to produce a stiffer EoS. This is actually needed to improve the saturation point of symmetric nuclear matter obtained using the two-body NN interaction. The results of several microscopic approaches are compared. It is found that the EoS is sensitive to the momentum-space cut-off \(\Lambda \). Also the partial wave contributions to potential energy at the empirical saturation density \(\rho = 0.16\) fm\(^{-3}\) for different potentials are listed from \(^{1}S_{0}\) to \(^{3}F_{3}\) states. It is found that all contributions are nearly cut-off independent except the ones from \(^{3}P_{1}\), \(^{3}P_{2}, ^{3}\!H_{4}\) and \(^{3}F_{4}\) states, which are increasing with the cut-off \(\Lambda \). Actually, the size of these contributions is strongly dependent on the central and tensor components in the NN potential. The larger cut-off \(\Lambda \) corresponds to harder interactions and gives more repulsive contribution to the NN potential at short distance. It leads to smaller binding energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P Demorest, T Pennucci, S Ransom, M Roberts and J Hessels, Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  2. J Antoniadis et al, Science 340, 6131 (2013)

    Article  ADS  Google Scholar 

  3. R Oechslin, H T Janka and A Marek, Astron. Astrophys. 467, 395 (2007)

    Article  ADS  Google Scholar 

  4. R Oechslin and H T Janka, Phys. Rev. Lett. 99, 121102 (2007)

    Article  ADS  Google Scholar 

  5. Y I Shin, C H Schunck, A Schirotzek and W Ketterle, Nature 689, 451 (2008)

    Google Scholar 

  6. M J H Ku, A T Sommer, L W Cheuk and M W Zwierlein, Science 563, 335 (2012)

    Google Scholar 

  7. Y LeCun, Y Begio and G E Hinton, Nature 521, 436 (2015)

    Article  ADS  Google Scholar 

  8. D Kasen, B Metzger, J Barnes, E Quataert and E Ramirez-Ruiz, Nature 551, 80 (2017)

    Article  ADS  Google Scholar 

  9. LIGO Scientific, Virgo: B P Abbott et al, Phys. Rev. Lett. 121, 161101 (2018)

  10. E Annala, T Gorda, A Kurkela and A Vuorinen, Phys. Rev. Lett. 120, 172703 (2018)

    Article  ADS  Google Scholar 

  11. I Bombaci and D Logoteta, Astron. Astrophys. 609, A128 (2018)

    Article  ADS  Google Scholar 

  12. Y Fujimoto, K Fukushima and K Murase, Phys. Rev. D 101, 054016 (2020)

    Article  ADS  Google Scholar 

  13. J M Lattimer and M Prakash, Astrophys. J. 550, 426 (2001)

    Article  ADS  Google Scholar 

  14. J M Lattimer and M Prakash, Science 304, 536 (2004)

    Article  ADS  Google Scholar 

  15. J M Lattimer and M Prakash, Phys. Rep. 442, 109 (2007)

    Article  ADS  Google Scholar 

  16. F J Fattoyev, W G Newton, J Xu and B-A Li, Phys. Rev. C 86, 025804 (2012)

    Article  ADS  Google Scholar 

  17. T Krüger, I Tews, B Friman, K Hebeler and A Schwenk, Phys. Lett. B 726, 412 (2013)

    Article  ADS  Google Scholar 

  18. T Krüger, I Tews, K Hebeler and A Schwenk, Phys. Rev. C 88, 025802 (2013)

    Article  ADS  Google Scholar 

  19. J M Dong, U Lombardo and W Zuo, Phys. Rev. C 87, 062801(R) (2013)

    Article  ADS  Google Scholar 

  20. I Tews, T Krueger, K Hebeler and A Schwenk, Phys. Rev. Lett. 110, 032504 (2013)

    Article  ADS  Google Scholar 

  21. I Tews, T Krüger, A Gezerlis, K Hebeler and A Schwenk, Proceedings of the International Conference on Nuclear Theory in the Supercomputing Era 2013 (Iowa State University, May 13–17, 2013)

  22. H Heiselberg and M Hjorth-Jensen, Phys. Rep. 328, 237 (2000)

    Article  ADS  Google Scholar 

  23. N K Glendenning, Phys. Rep. 342, 393 (2001)

    Article  ADS  Google Scholar 

  24. M Baldo, I Bombaci and G F Burgio, Astron. Astrophys. 328, 274 (1997)

    ADS  Google Scholar 

  25. R Schiavilla, V R Pandharipande and R B Wiringa, Nucl. Phys. A 449, 219 (1986)

    Article  ADS  Google Scholar 

  26. J Carlson, R R Pandharipande and R B Wiringa, Nucl. Phys. A 401, 59 (1983)

    Article  ADS  Google Scholar 

  27. R Machleidt and D R Entem, Phys. Rep. 503, 1 (2011)

    Article  ADS  Google Scholar 

  28. E Marji, A Canul, Q Macpherson, R Winzer, Ch Zeoli, D R Entem and R Machleidt, Phys. Rev. C 88, 054002 (2013)

    Article  ADS  Google Scholar 

  29. F Sammarruca, R Machleidt and N Kaiser, Phys. Rev. C 92, 054327 (2015)

    Article  ADS  Google Scholar 

  30. D R Entem, R Machleidt and Y Nosyk, Phys. Rev. C 96, 024004 (2017)

    Article  ADS  Google Scholar 

  31. F Sammarruca, L E Marcucci, L Coraggio, J W Holt, N Itaco and R Macheidt, arXiv:1807.06640v1

  32. M Hoferichter, J Ruiz, de Elvira, B Kubis and U-G Meissner, Phys. Rev. Lett. 115, 192301 (2015); Phys. Rep. 625, 1 (2016)

  33. J P Jeukenne, A Lejeune and C Mahaux, Phys. Rev. C 10, 1391 (1974)

    Article  ADS  Google Scholar 

  34. H Q Song, M Baldo, G Giansiracusa and U Lombardo, Phys. Rev. Lett. 81, 1584 (1998)

    Article  ADS  Google Scholar 

  35. Kh Gad, Eur. Phys. J. A 22, 405 (2004)

    Article  ADS  Google Scholar 

  36. K Gad, Nucl. Phys. A 747, 655 (2005)

    Article  ADS  Google Scholar 

  37. K Gad, J. Phys. G 32, 799 (2006)

    Article  ADS  Google Scholar 

  38. K Gad and K S A Hassaneen, Nucl. Phys. A 793, 67 (2007)

    Article  ADS  Google Scholar 

  39. K Hassaneen and K Gad, J. Phys. Soc. Jpn. 77, 084201 (2008)

    Article  ADS  Google Scholar 

  40. P Gögelein, E N E Van Dalen, K Gad, K S A Hassaneen and H Müther, Phys. Rev. C 79, 024308 (2009)

  41. H Mansour, K Gad and K S A Hassaneen, Prog. Theor. Phys. 123, 687 (2010)

    Article  ADS  Google Scholar 

  42. K Gad, Ann. Phys. 326, 2474 (2011)

    Article  ADS  Google Scholar 

  43. K Gad, Ann. Phys. 327, 2403 (2012)

    Article  ADS  Google Scholar 

  44. F Coester, S Cohen, B D Day and C M Vincent, Phys. Rev. C 1, 769 (1970)

    Article  ADS  Google Scholar 

  45. S Gandolfi, A Gezerlis and J Carlson, Annu. Rev. Nucl. Part. Sci. 65, 303 (2015)

    Article  ADS  Google Scholar 

  46. T H R Skyrme, Nucl. Phys. 9, 615 (1959]

    Article  Google Scholar 

  47. D Vautherin and D M Brink, Phys. Rev. C 5, 62 (1972)

    Article  ADS  Google Scholar 

  48. P Bonche and D Vautherin, Nucl. Phys. A 372, 496 (1981)

    Article  ADS  Google Scholar 

  49. J R Stone and P-G Reinhard, Prog. Part. Nucl. Phys. 56, 587 (2007)

    Article  ADS  Google Scholar 

  50. I Dutt and N K Dhiman, Chin. Phys. Lett. 27, 112401 (2010)

    Article  Google Scholar 

  51. E Chabanat, P Bonche, P Haensel, J Meyer and R Schaeffer, Nucl. Phys. A 627, 710 (1997); Nucl. Phys. A 635, 231 (1998)

  52. E N E van Dalen, P Gögelein and H Müther, Phys. Rev. C 80, 044312 (2009)

    Article  ADS  Google Scholar 

  53. P Grygorov, E N V van Dalen, J Margueron and H Müther, Phys. Rev. C 82, 014315 (2010)

    Article  ADS  Google Scholar 

  54. E N E van Dalen and H Müther, Phys. Rev. C 90, 034312 (2014)

    Article  ADS  Google Scholar 

  55. P Grange, J Cugnon and A Lejeune, Nucl. Phys. A 473, 365 (1987)

    Article  ADS  Google Scholar 

  56. G Q Li, R Machleidt and R Brockmann, Phys. Rev. C 45, 2782 (1992)

    Article  ADS  Google Scholar 

  57. S Gandolfi, J Carlson, S Reddy, A W Steiner and R B Wiringa, Eur. Phys. J. A 50, 10 (2014)

    Article  ADS  Google Scholar 

  58. A Akmal, V R Pandharipande and D G Ravenhall, Phys. Rev. C 58, 1804 (1998)

    Article  ADS  Google Scholar 

  59. R Millerson and F Sammarruca, arXiv:1906.02905v1

  60. S Binder, J Langhammer, A Calci and R Roth, Phys. Lett. B 736, 119 (2014)

    Article  ADS  Google Scholar 

  61. K Gad, Eur. Phys. J. A 51, 98 (2015)

    Article  ADS  Google Scholar 

  62. P Wang and W Zuo, Chin. Phys. C 33, 1 (2009)

    ADS  Google Scholar 

  63. P Danielewicz, R Lacey and W G Lynch, Science 298, 1592 (2002)

    Article  ADS  Google Scholar 

  64. M Prakash, T L Ainsworth and J M Lattimer, Phys. Rev. Lett. 61, 2518 (1988)

    Article  ADS  Google Scholar 

  65. M Baldo, G F Burgio, H-J Schulze and G Taranto, Phys. Rev. C 89, 048801 (2014)

    Article  ADS  Google Scholar 

  66. K Gad, Phys. At. Nucl. 81, 429 (2018)

    Article  Google Scholar 

  67. K Gad, Indian J. Phys. 95, 1499 (2021)

Download references

Acknowledgements

The author is grateful to Deanship of Scientific Research at Islamic University of Madinah for funding this work through the research Project No. (23/40) of the 10th (Takamul) programs of academic year 1440-1441 AH. The author would like to thank Professor R Machleidt for providing potential code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh Gad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gad, K. Properties of pure neutron matter at low and high densities. Pramana - J Phys 95, 108 (2021). https://doi.org/10.1007/s12043-021-02144-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02144-7

Keywords

PACS

Navigation