Skip to main content
Log in

Emergence of quantum phases for the interacting helical liquid of topological quantum matter

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Emergence of different interesting and insightful phenomena in different length scales is the heart of quantum many-body system. We present emergence of quantum phases for the interacting helical liquid of topological quantum matter. We also observe that Luttinger liquid parameter plays a significant role to determine different quantum phases. We use three sets of renormalisation group (RG) equations to solve emergent quantum phases for our model Hamiltonian system. Two of them are the quantum Berezinskii–Kosterlitz–Thouless (BKT) equations. We show explicitly from the study of length scale-dependent emergent physics that there is no evidence of Majorana–Ising transition for the two sets of quantum BKT equations, i.e., the system is either in the topological superconducting phase or in the Ising phase. The whole set of RG equation shows the evidence of length scale-dependent Majorana–Ising transition. Emergence of length scale-dependent quantum phases can be observed in topological materials which exhibit fundamentally new physical phenomena with potential applications for novel devices and quantum information technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P Coleman, Quantum many body physics (Cambridge University Press, United Kingdom, 2015)

    MATH  Google Scholar 

  2. P W Anderson, Science 1777, 393 (1972)

    Article  ADS  Google Scholar 

  3. P W Anderson, Basic notion of condensed matter physics (Benjamin Cummings, 1984)

  4. M Z Hasan and C L Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  5. J E Moore, Nature 464, 194 (2010)

    Article  ADS  Google Scholar 

  6. S Barik, A Karasahin, C Flower, T Cai, H Miyake, W DeGottardi, M Hafezi and E Waks, Science 359, 666 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. S D Sarma, M Freedman and C Nayak, Npj Quantum Inf. 1, 1 (2015)

    Article  Google Scholar 

  8. K V Klitzing, G Dorda and M Pepper, Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  9. D J Thouless, M Kohmoto, M P Nightingale and M den Nijs, Phys. Rev. Lett. 49, 405 (1982)

    Article  ADS  Google Scholar 

  10. B A Bernevig and S C Zhang, Phys. Rev. Lett. 96, 106802 (2006)

    Article  ADS  Google Scholar 

  11. B A Bernevig, T L Hughes and S C Zhang, Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  12. M König, S Wiedmann, C Brüne, A Roth, H Buhmann, L W Molenkamp, X L Qi and S C Zhang, Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  13. C Wu, B A Bernevig and S C Zhang, Phys. Rev. Lett. 96, 106401 (2006)

    Article  ADS  Google Scholar 

  14. T Li, P Wang, H Fu, L Du, K A Schreiber, X Mu, X Liu, G Sullivan, G A Csathy, X Lin and R R Du, Phys. Rev. Lett. 115, 136804 (2015)

    ADS  Google Scholar 

  15. E Sela, A Altland and A Rosch, Phys. Rev. B 84, 085114 (2011)

    Article  ADS  Google Scholar 

  16. S Sarkar, Sci. Rep. 6, 30569 (2016)

    Article  ADS  Google Scholar 

  17. Duncan Haldane (Nobel Prize in Physics 2016), Distinguished lecture on 11 January 2019 at ICTS, India

  18. A Altland and B D Simons, Condensed matter field theory (Cambridge University Press, 2010)

    Book  Google Scholar 

  19. E Fradkin, Field theories of condensed matter physics (Cambridge University Press, 2013)

    Book  Google Scholar 

  20. E C Marino, Quantum field theory approach to condensed matter physics (Cambridge University Press, 2017)

    Book  Google Scholar 

  21. R Shankar, Quantum field theory and condensed matter: An introduction (Cambridge University Press, 2017)

    Book  Google Scholar 

  22. V L Berezinskii, Sov. Phys. JETP 32, 493 (1971)

    ADS  MathSciNet  Google Scholar 

  23. J M Kosterlitz and D J Thouless, J. Phys. C 6, 1181 (1973)

    Article  ADS  Google Scholar 

  24. G Ortiz, E Cobanera and Z Nussinov, Berezinskii–Kosterlitz–Thouless transition through the eyes of duality, in: 40 Years of Berezinskii–Kosterlitz–Thouless Theory (World Scientific, 2013) pp. 93–134

  25. C L Kane and E J Mele, Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  26. F Pollmann, E Berg, A M Turner and M Oshikawa, Phys. Rev. B 85, 075125 (2012)

    Article  ADS  Google Scholar 

  27. S Gangadharaiah, B Braunecker, P Simon and D Loss, Phys. Rev. Lett. 107, 036801 (2011)

    Article  ADS  Google Scholar 

  28. K C Nowack, E m Spanton, M Baenninger, M König, J R Kirtley, B Kalisky, C Ames, P Leubner, C Brüne, H Buhmann and L W Molenkamp, Nature Mater. 12, 787 (2013)

  29. E M Spanton, K C Nowack, L Du, G Sullivan, R R Du and K A Moler, Phys. Rev. Lett. 113, 026804 (2014)

    Article  ADS  Google Scholar 

  30. C W J Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113 (2013)

    Article  ADS  Google Scholar 

  31. D Hsieh, D Qian, L Wray, Y Xia, Y S Hor, R J Cava and M Z Hasan, Nature 452, 970 (2008)

Download references

Acknowledgements

RRK, SR and SS would like to acknowledge Mr N Prakash and Prof. R Srikanth for reading the manuscript critically. RRK, SR and SS also acknowledge RRI library for the books and journals and ICTS for Lectures/seminars/workshops/conferences/discussion meetings of different aspects of physics. SS would like to acknowledge DST (EMR/2017/000898) for the support. RRK and SR would like to thank Admar Mutt Education Foundation for the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Sarkar.

Appendix A. Derivation of RG equations for the model Hamiltonian

Appendix A. Derivation of RG equations for the model Hamiltonian

We consider the bosonised model Hamiltonian with \(g_u=0\) after rescaling the fields,

$$\begin{aligned} \phi ^{\prime } = \frac{\phi }{\sqrt{K}} \end{aligned}$$

and

$$\begin{aligned} \theta ^{\prime } = \sqrt{K}\theta . \end{aligned}$$

Now the model Hamiltonian can be rewritten as

$$\begin{aligned} H= & {} \frac{v}{2} [ {({\partial _x \phi ^{\prime } })}^2 + {({\partial _x \theta ^{\prime } })}^2 ] - \mu \sqrt{\frac{K}{\pi }} \partial _x \phi ^{\prime } \nonumber \\&+ \frac{B}{\pi } \cos (\sqrt{4 \pi K} \phi ^{\prime }) - \frac{\Delta }{\pi } \cos \left( \sqrt{\frac{4 \pi }{K} \theta ^{\prime }}\right) , \end{aligned}$$
(A.1)

where \(\theta (x)\) and \(\phi (x)\) are the dual fields and K is the Luttinger liquid parameter of the system. Writing the Lagrangian using the Hamilton’s equations,

$$\begin{aligned} \partial _{x} \theta ^{\prime } = -\frac{1}{v} \partial _{t} \phi ^{\prime } \end{aligned}$$

and

$$\begin{aligned} \partial _{x}\phi ^{\prime } = -\frac{1}{v} \partial _{t} \theta ^{\prime } \end{aligned}$$

leads to

$$\begin{aligned} {\mathcal {L}}_0^{(\phi )}&= \Pi _{\phi ^{\prime }} \partial _t \phi ^{\prime }-H_0^{\prime } = \frac{1}{2}[v^{-1}(\partial _t \phi ^{\prime })^2-v(\partial _x \phi ^{\prime })^2],\nonumber \\ {\mathcal {L}}_0^{(\theta )}&=\Pi _{\theta ^{\prime }} \partial _t \theta ^{\prime }-H_0^{\prime }= \frac{1}{2}[v^{-1}(\partial _t \theta ^{\prime })^2-v(\partial _x \theta ^{\prime })^2].\nonumber \\ \end{aligned}$$
(A.2)

Thus, the complete form of \({\mathcal {L}}_0= {\mathcal {L}}_0^{(\phi )}+{\mathcal {L}}_0^{(\theta )}\) in terms of imaginary time, i.e, \(\tau =it\), can be written as

$$\begin{aligned} {\mathcal {L}}_0&= -\frac{1}{4} [v^{-1}(\partial _{\tau } \phi ^{\prime })^2 {+} v^{-1}(\partial _{\tau } \theta ^{\prime })^2 {+} v(\partial _x \phi ^{\prime })^2 \\&\qquad {+} v(\partial _x \theta ^{\prime })^2]. \end{aligned}$$

Lagrangian of the interaction terms \({\mathcal {L}}_{\mathrm {int}}=-H_{\mathrm {int}}\) are

$$\begin{aligned} {\mathcal {L}}_{\mathrm {int}}&= -\dfrac{i\mu }{v} \sqrt{\dfrac{K}{\pi }} \partial _{\tau } \theta ^{\prime } - \dfrac{B}{\pi }\cos ( \sqrt{4 \pi K} \phi ^{\prime })\nonumber \\&\quad + \dfrac{\Delta }{\pi } \cos \left( \sqrt{\dfrac{4 \pi }{K}} \theta ^{\prime } \right) . \end{aligned}$$
(A.3)

Now we write the partition function \({\mathcal {Z}}\) as

$$\begin{aligned} {\mathcal {Z}}= \int {\mathcal {D}}\phi {\mathcal {D}}\theta \mathrm {e}^{-S_E[\phi ,\theta ]}, \end{aligned}$$
(A.4)

where

$$\begin{aligned} S_E= \int \mathrm {d}\tau \,\mathrm {d}x {\mathcal {L}} = \int \mathrm {d}\tau \, \mathrm {d}x ({\mathcal {L}}_0+{\mathcal {L}}_{\mathrm {int}}) \end{aligned}$$

is the Euclidean action. Thus, we have

$$\begin{aligned} {\mathcal {Z}}= & {} \int {\mathcal {D}}\phi {\mathcal {D}}\theta \, \exp \left[ - \int _{-\Lambda }^{\Lambda } \frac{\mathrm {d}\omega }{2\pi }|\omega | \left( \frac{|\phi (\omega )|^2}{2K}\right. \right. \nonumber \\&+\left. \left. \frac{K|\theta (\omega )|^2}{2}\right) + \int \mathrm {d}\tau \left( {\mathcal {L}}_{\mathrm {int}}\right) \right] . \end{aligned}$$
(A.5)

Now we divide the fields into slow and fast modes and integrate out the fast modes. The field \(\phi (\tau )=\phi _s(\tau )+\phi _f(\tau )\) and \(\theta (\tau )=\theta _s(\tau )+\theta _f(\tau )\), where

$$\begin{aligned}&\phi _{s}(\tau )=\int _{-\Lambda /b}^{\Lambda /b} \frac{\mathrm {d}\omega }{2\pi } \mathrm {e}^{-i\omega \tau }\phi (\omega ), \;\;\;\;\;\\&\phi _f(\tau )=\int _{\Lambda /b<|\omega _n|<\Lambda } \frac{\mathrm {d}\omega }{2\pi } \mathrm {e}^{-i\omega \tau }\phi (\omega )\\&\theta _{s}(\tau )=\int _{-\Lambda /b}^{\Lambda /b} \frac{\mathrm {d}\omega }{2\pi } \mathrm {e}^{-i\omega \tau }\theta (\omega ), \;\;\;\;\;\\&\theta _f(\tau )=\int _{\Lambda /b<|\omega _n|<\Lambda } \frac{\mathrm {d}\omega }{2\pi } \mathrm {e}^{-i\omega \tau }\theta (\omega ). \end{aligned}$$

Thus, \({\mathcal {Z}}\) can be written as

$$\begin{aligned} {\mathcal {Z}}= & {} \int {\mathcal {D}}\phi _s {\mathcal {D}}\phi _f {\mathcal {D}}\theta _s {\mathcal {D}}\theta _f\nonumber \\&\times \mathrm {e}^{-S_s(\phi _s,\theta _s)} \mathrm {e}^{-S_f(\phi _f,\theta _f)} \mathrm {e}^{-S_{int}(\phi ,\theta )}. \end{aligned}$$
(A.6)

Now the effective action can be written as

$$\begin{aligned} S_{\mathrm {eff}}(\phi _s,\theta _s)= & {} S_s(\phi _s,\theta _s) \nonumber \\ {\!}{\!}&{\!}{\!}- \ln \langle \mathrm {e}^{-S_{\mathrm {int}}(\phi ,\theta )} \rangle _f. \end{aligned}$$
(A.7)

Writing the cumulant expansion up to the second order, we have

$$\begin{aligned} S_{\mathrm {eff}}(\phi _s,\theta _s){\!}{\!}{\!}{\!}= & {} {\!}{\!}{\!}{\!}S_s(\phi _s,\theta _s)+ \left\langle S_{\mathrm {int}}(\phi ,\theta ) \right\rangle _f \nonumber \\&\qquad -&\frac{1}{2} ( \langle S^2_{\mathrm {int}}(\phi ,\theta )\rangle _f - \left\langle S_{\mathrm {int}}(\phi ,\theta ) \right\rangle ^2_f) . \end{aligned}$$
(A.8)

At first, we calculate the first-order cumulant expansion

$$\begin{aligned} \left\langle S_{\mathrm {int}}(\phi ,\theta ) \right\rangle _f {\!}{\!}{\!}{\!}{\!}{\!}{\!}= & {} {\!}{\!}{\!}{\!}{\!}{\!}{\!} \int \mathrm {d}\tau \left\langle \frac{i\mu }{v\sqrt{\pi }} \partial _{\tau } \theta \right\rangle _f \nonumber \\&\qquad +&\int \mathrm {d}\tau \frac{B}{\pi }\langle \cos (\sqrt{4\pi }\phi (\tau ))\rangle _f \nonumber \\&\qquad -&\int \mathrm {d}\tau \frac{\Delta }{\pi }\langle \cos (\sqrt{4\pi }\theta (\tau ))\rangle _f. \end{aligned}$$
(A.9)

The second term can be written as

$$\begin{aligned} \begin{aligned}&\langle S_B(\phi _s,\phi _f)\rangle \\&\quad = \int \mathrm {d}\tau \left( \frac{B}{\pi }\right) \int {\mathcal {D}}\phi _f \mathrm {}^{-S_f[\phi _f]} \cos (\sqrt{4\pi }\phi (\tau )) \\&\quad =\frac{B}{2\pi } \int \mathrm {d}\tau \left\{ \mathrm {e}^{i\sqrt{4\pi }\phi _s(\tau )} \mathrm {e}^{-\int _f \frac{\mathrm {d}\omega }{2\pi } \frac{4\pi }{2} \frac{K}{|\omega |}} + \mathrm {H.c.} \right\} \\&\quad = b^{-K} \int \mathrm {d}\tau \left( \frac{B}{\pi } \right) \cos [\sqrt{4\pi }\phi _s(\tau )]. \end{aligned} \end{aligned}$$

Similarly, for coupling \(\Delta \) we have

$$\begin{aligned} \begin{aligned} \langle S_\Delta (\theta _s,\theta _f)\rangle&= b^{-{1}/{K}}\int \mathrm {d}\tau \left( \frac{\Delta }{\pi } \right) \cos [\sqrt{4\pi }\theta _s(\tau )]. \end{aligned}\nonumber \\ \end{aligned}$$
(A.10)

Thus, the first-order cumulant expansions can be rewritten as

$$\begin{aligned} \begin{aligned} \left\langle S_{\mathrm {int}}(\phi ,\theta ) \right\rangle _f&=b^{-K}\int \mathrm {d}\tau \left( \frac{B}{\pi } \cos (\sqrt{4\pi }\phi _s(\tau ))\right) \\&\quad - b^{-{1}/{K}}\int \mathrm {d}\tau \left( \frac{\Delta }{\pi }\cos (\sqrt{4\pi }\theta _s(\tau ))\right) . \end{aligned}\nonumber \\ \end{aligned}$$
(A.11)

Now we calculate the second-order cumulant expansion which has the following terms:

$$\begin{aligned}&-\frac{1}{2}(\langle S_{\mathrm {int}}^2\rangle -\left\langle S_{\mathrm {int}}\right\rangle ^2) = -\frac{1}{2} \int \mathrm {d}\tau \, \mathrm {d}\tau ^{\prime } \nonumber \\&\times \left( -\frac{\mu ^2}{v^2\pi } \left\langle \partial _{\tau }\phi (\tau )\partial _{\tau ^{\prime }}\phi (\tau ^{\prime })\right\rangle - \left\langle \partial _{\tau }\phi (\tau ) \right\rangle \left\langle \partial _{\tau ^{\prime }}\phi (\tau ^{\prime })\right\rangle \right) \nonumber \\&-\frac{1}{2} \int \mathrm {d}\tau \,\mathrm {d}\tau ^{\prime }\left( \frac{B^2}{\pi ^2} \langle \cos (\sqrt{4\pi }\phi (\tau )) \cos (\sqrt{4\pi }\phi (\tau ^{\prime }))\rangle \right. \nonumber \\&\left. - \langle \cos (\sqrt{4\pi }\phi (\tau )) \rangle \langle \cos (\sqrt{4\pi }\phi (\tau ^{\prime }))\rangle \right) \nonumber \\&-\frac{1}{2} \int \mathrm {d}\tau \,\mathrm {d}\tau ^{\prime } \left( \frac{\Delta ^2}{\pi ^2} \langle \cos (\sqrt{4\pi }\theta (\tau )) \cos (\sqrt{4\pi }\theta (\tau ^{\prime }))\rangle \right. \nonumber \\&\left. - \langle \cos (\sqrt{4\pi }\theta (\tau )) \rangle \langle \cos (\sqrt{4\pi }\theta (\tau ^{\prime }))\rangle \right) \nonumber \\&-\frac{1}{2} \int \mathrm {d}\tau \, \mathrm {d}\tau ^{\prime }\left( \frac{i\mu B}{v\sqrt{\pi }\pi } \langle \partial _{\tau }\phi (\tau )\cos (\sqrt{4\pi }\phi (\tau ^{\prime }))\rangle \right. \nonumber \\&\times \left. \left\langle \partial _{\tau }\phi (\tau )\right\rangle - \langle \cos (\sqrt{4\pi }\phi (\tau ^{\prime })) \rangle \right) \nonumber \\&-\frac{1}{2} \int \mathrm {d}\tau \, \mathrm {d}\tau ^{\prime }\bigg (- \frac{ i\mu \Delta }{v\sqrt{\pi }\pi } \langle \partial _{\tau }\phi (\tau ) \cos (\sqrt{4\pi }\theta (\tau ^{\prime }))\rangle \nonumber \\&- \left\langle \partial _{\tau }\phi (\tau )\right\rangle \langle \cos (\sqrt{4\pi }\theta (\tau ^{\prime }))\rangle \bigg )\nonumber \\&-\frac{1}{2} \int \mathrm {d}\tau \,\mathrm {d}\tau ^{\prime }\bigg ( \frac{Bi\mu }{\pi v\sqrt{\pi }} \langle \cos (\sqrt{4\pi }\phi (\tau )) \partial _{\tau ^{\prime }}\phi (\tau ^{\prime })\rangle \nonumber \\&- \langle \cos (\sqrt{4\pi }\phi (\tau )) \rangle \left\langle \partial _{\tau ^{\prime }}\phi (\tau ^{\prime })\right\rangle \bigg )\nonumber \\&{-}\frac{1}{2} \int \mathrm {d}\tau \mathrm {d}\tau ^{\prime }\!\bigg (\! {-}\frac{B\Delta }{\pi ^2} \langle \cos (\sqrt{4\pi }\phi (\tau )) \cos (\sqrt{4\pi }\theta (\tau ^{\prime }))\rangle \nonumber \\&- \langle \cos (\sqrt{4\pi }\phi (\tau )) \rangle \langle \cos (\sqrt{4\pi }\theta (\tau ^{\prime }))\rangle \bigg )\nonumber \\&-\frac{1}{2} \int \mathrm {d}\tau \,\mathrm {d}\tau ^{\prime }\bigg (- \frac{\Delta i \mu }{\pi v\sqrt{\pi }} \langle \cos (\sqrt{4\pi }\theta (\tau )) \partial _{\tau ^{\prime }}\phi (\tau ^{\prime })\rangle \nonumber \\&- \langle \cos (\sqrt{4\pi }\theta (\tau )) \rangle \left\langle \partial _{\tau ^{\prime }}\phi (\tau ^{\prime })\right\rangle \bigg )\nonumber \\&{-}\frac{1}{2} \int \mathrm {d}\tau \mathrm {d}\tau ^{\prime }\!\bigg (\! {-}\frac{\Delta B}{\pi ^2} \langle \cos (\sqrt{4\pi }\theta (\tau )) \cos (\sqrt{4\pi }\phi (\tau ^{\prime }))\rangle \nonumber \\&- \langle \cos (\sqrt{4\pi }\theta (\tau )) \rangle \langle \cos (\sqrt{4\pi }\phi (\tau ^{\prime }))\rangle \bigg ). \end{aligned}$$
(A.12)

Now we calculate each term separately. \(B^2\) term can be written as

$$\begin{aligned}&-\frac{1}{2} \int \mathrm {d}\tau \, \mathrm {d}\tau ^{\prime }\bigg ( \frac{B^2}{\pi ^2} \langle \cos (\sqrt{4\pi }\phi (\tau )) \cos (\sqrt{4\pi }\phi (\tau ^{\prime }))\rangle \nonumber \\&\qquad - \langle \cos (\sqrt{4\pi }\phi (\tau )) \rangle \langle \cos (\sqrt{4\pi }\phi (\tau ^{\prime }))\rangle \bigg )\nonumber \\&\quad = -\frac{B^2}{2\pi ^2} \int \mathrm {d}\tau \, \mathrm {d}\tau ^{\prime } [ \cos \sqrt{4\pi }[\phi _s(\tau )+\phi _s(\tau ^{\prime })] \nonumber \\&\qquad \times ( \mathrm {e}^{-2\pi \langle ( \phi _f(\tau ) + \phi _f(\tau ^{\prime }))^2 \rangle } - \mathrm {e}^{-2\pi [\langle \phi _f^2(\tau ) \rangle + \langle \phi _f^2(\tau ^{\prime }) \rangle ]} )]\nonumber \\&\qquad \quad -\frac{B^2}{2\pi ^2} \int \mathrm {d}\tau \, \mathrm {d}\tau ^{\prime } [ \cos \sqrt{4\pi }[\phi _s(\tau )-\phi _s(\tau ^{\prime })] \nonumber \\&\qquad \times ( \mathrm {e}^{-2\pi \left\langle \left( \phi _f(\tau ) - \phi _f(\tau ^{\prime })\right) ^2 \right\rangle } - \mathrm {e}^{-2\pi [\left\langle \phi _f^2(\tau ) \right\rangle + \left\langle \phi _f^2(\tau ^{\prime }) \right\rangle ]} ) ] .\nonumber \\ \end{aligned}$$
(A.13)

The correlation function can be calculated as

$$\begin{aligned}&\mathrm {e}^{-2\pi \big \langle \left( \phi _f(\tau ) {+} \phi _f(\tau ^{\prime })\right) ^2 \big \rangle } {=} b^{-4K},\quad \\&\mathrm {e}^{-2\pi \big \langle \left( \phi _f(\tau ) {-} \phi _f(\tau ^{\prime })\right) ^2 \big \rangle } {=} 1 \end{aligned}$$

and

$$\begin{aligned} \mathrm {e}^{-2\pi [\big \langle \phi _f^2(\tau ) \big \rangle + \big \langle \phi _f^2(\tau ^{\prime }) \big \rangle ]}=b^{-2K}. \end{aligned}$$

Thus, by setting \(\tau ^{\prime }\rightarrow \tau \) we have

$$\begin{aligned}&-\frac{1}{2} \int \mathrm {d}\tau \, \mathrm {d}\tau ^{\prime }\bigg ( \frac{B^2}{\pi ^2} \langle \cos (\sqrt{4\pi }\phi (\tau )) \cos (\sqrt{4\pi }\phi (\tau ^{\prime }))\rangle \nonumber \\&\qquad - \langle \cos (\sqrt{4\pi }\phi (\tau )) \rangle \langle \cos (\sqrt{4\pi }\phi (\tau ^{\prime }))\rangle \bigg ) \nonumber \\&= -\frac{B^2}{2\pi ^2} \int \mathrm {d}\tau \bigg [ \cos [2\sqrt{4\pi }\phi _s(\tau )] \nonumber \\&\qquad \times ( b^{-4K} - b^{-2K} ) + \left[ 1-\frac{1}{2}(\partial _{\tau }\phi _s)^2\right] (1- b^{-2K} ) \bigg ] .\nonumber \\ \end{aligned}$$
(A.14)

Here we have

$$\begin{aligned}&\frac{\mathrm {d}}{\mathrm {d}\tau }\cos [\sqrt{4\pi }(\phi _s(\tau )-\phi _s(\tau ^{\prime }))]\nonumber \\&\quad = -\sin [\sqrt{4\pi }(\phi _s(\tau )-\phi _s(\tau ^{\prime }))] \left( -\frac{\partial \phi _s}{\partial \tau ^{\prime }}\right) . \end{aligned}$$
(A.15)
$$\begin{aligned}&\frac{\mathrm {d}^2}{\mathrm {d}\tau ^{\prime 2}}\cos [\sqrt{4\pi }(\phi _s(\tau )-\phi _s(\tau ^{\prime }))]\nonumber \\&\quad = - \cos [\sqrt{4\pi }(\phi _s(\tau )-\phi _s(\tau ^{\prime }))] \left( -\frac{\partial \phi _s}{\partial \tau ^{\prime }}\right) ^2 \nonumber \\&\qquad + \sin [\sqrt{4\pi }(\phi _s(\tau )-\phi _s(\tau ^{\prime }))] \left( -\frac{\partial ^2 \phi _s}{\partial \tau ^{\prime 2}}\right) ^2. \end{aligned}$$
(A.16)

As \(\tau \rightarrow \tau ^{\prime }\)

$$\begin{aligned} \rightarrow \left( \frac{\partial \phi _s}{\partial \tau ^{\prime }}\right) ^2. \end{aligned}$$
(A.17)

Thus, we have \(\cos \sqrt{4\pi }[\phi _s(\tau )-\phi _s(\tau ^{\prime })]= 1-\frac{1}{2}(\partial _{\tau }\phi _s)^2\). The first part of the second term is field-independent. This term can be neglected and we remain with

$$\begin{aligned}&-\frac{1}{2} \int \mathrm {d}\tau \, \mathrm {d}\tau ^{\prime }\bigg ( \frac{B^2}{\pi ^2} \langle \cos (\sqrt{4\pi }\phi (\tau )) \cos (\sqrt{4\pi }\phi (\tau ^{\prime }))\rangle \nonumber \\&\qquad \qquad \qquad \quad - \langle \cos (\sqrt{4\pi }\phi (\tau )) \rangle \langle \cos (\sqrt{4\pi }\phi (\tau ^{\prime }))\rangle \bigg ) \nonumber \\&\quad = \frac{B^2}{4\pi ^2}(1- b^{-2K})\int \mathrm {d}\tau (\partial _{\tau }\phi _s)^2 \nonumber \\&\qquad - \frac{B^2}{2\pi ^2}(b^{-4K}- b^{-2K})\int \mathrm {d}\tau \cos [\sqrt{16\pi }\phi _s(\tau )].\nonumber \\ \end{aligned}$$
(A.18)

Similarly, one can also follow the same procedure for \(\Delta ^2\) term.

$$\begin{aligned}&-\frac{1}{2} \int \mathrm {d}\tau \, \mathrm {d}\tau ^{\prime } \bigg ( \frac{\Delta ^2}{\pi ^2} \langle \cos (\sqrt{4\pi }\theta (\tau )) \cos (\sqrt{4\pi }\theta (\tau ^{\prime }))\rangle \nonumber \\&\quad - \langle \cos (\sqrt{4\pi }\theta (\tau )) \rangle \langle \cos (\sqrt{4\pi }\theta (\tau ^{\prime }))\rangle \bigg )\nonumber \\&\qquad = \frac{\Delta ^2}{4\pi ^2}(1- b^{-{2}/{K}})\int \mathrm {d}\tau (\partial _{\tau }\theta _s)^2. \end{aligned}$$
(A.19)

Now we calculate \(\Delta i\mu \) term,

$$\begin{aligned}&-\frac{1}{2} \int \mathrm {d}\tau \, \mathrm {d}\tau ^{\prime }\bigg (- \frac{\Delta i \mu }{\pi v\sqrt{\pi }} \langle \cos (\sqrt{4\pi }\theta (\tau )) \partial _{\tau ^{\prime }}\theta (\tau ^{\prime })\rangle \nonumber \\&\quad - \langle \cos (\sqrt{4\pi }\theta (\tau )) \rangle \left\langle \partial _{\tau ^{\prime }}\theta (\tau ^{\prime })\right\rangle \bigg )\nonumber \\&= \frac{\Delta i \mu }{2\pi v\sqrt{\pi }}\int \mathrm {d}\tau \, \mathrm {d}\tau ^{\prime }[ \langle \cos [\sqrt{4\pi }\theta (\tau )](\partial _{\tau ^{\prime }}\theta _s(\tau ^{\prime })\nonumber \\&\quad +\partial _{\tau ^{\prime }}\theta _f(\tau ^{\prime }))\rangle ]\nonumber \\&\quad -\frac{\Delta i \mu }{2\pi v\sqrt{\pi }}\int \mathrm {d}\tau \, \mathrm {d}\tau ^{\prime }[ \langle \cos [\sqrt{4\pi }\theta (\tau )] \rangle \langle \partial _{\tau ^{\prime }}\theta _s(\tau ^{\prime })\nonumber \\&\quad +\partial _{\tau ^{\prime }}\theta _f(\tau ^{\prime }) \rangle ] \nonumber \\&=\frac{\Delta i \mu }{2\pi v\sqrt{\pi }}\int \mathrm {d}\tau \,\mathrm {d}\tau ^{\prime }[\langle \cos [\sqrt{4\pi }\theta (\tau )]\partial _{\tau ^{\prime }}\theta _f(\tau ^{\prime })\rangle ] .\nonumber \\ \end{aligned}$$
(A.20)

The correlation function \(\langle \cos [\sqrt{4\pi }\theta (\tau )]\partial _{\tau ^{\prime }}\theta _f(\tau ^{\prime })\rangle \) can be calculated as

$$\begin{aligned}&\langle \cos [\sqrt{4\pi }\theta (\tau )]\partial _{\tau ^{\prime }}\theta _f(\tau ^{\prime })\rangle \nonumber \\&\quad = \lim _{\epsilon \rightarrow 0} \frac{1}{2i\epsilon \sqrt{\pi }}\partial _{\tau ^{\prime }} \langle \mathrm {e}^{2i\epsilon \sqrt{\pi }\theta _f(\tau ^{\prime })}\cos [\sqrt{4\pi }\theta (\tau )]\rangle \nonumber \\&\quad = -2\sqrt{\pi } \sin [\sqrt{4\pi }\theta _s(\tau )]\partial _{\tau ^{\prime }}\langle \theta _f(\tau ^{\prime })\theta _f(\tau ) \rangle \mathrm {e}^{-2\pi \big \langle \theta ^2_f(\tau ) \big \rangle }.\nonumber \\ \end{aligned}$$
(A.21)

Thus, we have

$$\begin{aligned} \begin{aligned}&=-\frac{\Delta i \mu }{\pi v}\int \mathrm {d}\tau \,\mathrm {d}\tau ^{\prime } \sin [\sqrt{4\pi }\theta _s(\tau )]\partial _{\tau ^{\prime }}\langle \theta _f(\tau ^{\prime })\theta _f(\tau ) \rangle \\&\quad \times \mathrm {e}^{-2\pi \big \langle \theta ^2_f(\tau ) \big \rangle }\\&=-\frac{\Delta i \mu }{\pi v}\int \mathrm {d}\tau \sin [\sqrt{4\pi }\theta _s(\tau )]\left( -\frac{1}{2\pi K}\ln b\right) \\&\quad \times \mathrm {e}^{-2\pi (-\frac{1}{2\pi K}\ln b)}\\&=\frac{\Delta i \mu }{2\pi ^2 v}\int \mathrm {d}\tau \sin [\sqrt{4\pi }\theta _s(\tau )](\mathrm {e}^{\frac{1}{ K}\ln b}-1)( \mathrm {e}^{-\frac{1}{ K}\ln b})\\&=-\frac{ \Delta \mu }{2\pi ^2 v}(1-b^{-{1}/{K}})\int \mathrm {d}\tau \cos [\sqrt{4\pi }\theta _s(\tau )]. \end{aligned} \end{aligned}$$

Thus, the combined \(\Delta i\mu \) and \(i\mu \Delta \) terms is

$$\begin{aligned}&-\frac{1}{2} \int \mathrm {d}\tau \, \mathrm {d}\tau ^{\prime }\bigg (- \frac{\Delta i \mu }{\pi v\sqrt{\pi }} \langle \cos (\sqrt{4\pi }\theta (\tau )) \partial _{\tau ^{\prime }}\theta (\tau ^{\prime })\rangle \nonumber \\&\quad - \langle \cos (\sqrt{4\pi }\theta (\tau )) \rangle \left\langle \partial _{\tau ^{\prime }}\theta (\tau ^{\prime })\right\rangle \bigg )\nonumber \\&\quad =-\frac{ \Delta \mu }{\pi ^2 v}(1-b^{-{1}/{K}})\int \mathrm {d}\tau \cos [\sqrt{4\pi }\theta _s(\tau )]. \end{aligned}$$
(A.22)

In the case of \(Bi\mu \), the correlation function \(\langle \phi _f(\tau ) \theta _f(\tau ^{\prime }) \rangle \) is

$$\begin{aligned}&\langle \phi _f(\tau ) \theta _f(\tau ^{\prime }) \rangle \nonumber \\&\quad = \langle (\phi _{R\uparrow }+\phi _{L\downarrow })(\phi _{R\uparrow }^{\prime }-\phi _{L\downarrow }^{\prime }) \rangle \nonumber \\&\quad {=} \langle \phi _{R\uparrow }\phi _{R\uparrow }^{\prime } {-} \phi _{R\uparrow }\phi _{L\downarrow }^{\prime } {+} \phi _{L\downarrow } \phi _{R\uparrow }^{\prime } {-} \phi _{L\downarrow }\phi _{L\downarrow }^{\prime } \rangle {=}0. \end{aligned}$$
(A.23)

Thus, the combined \(Bi\mu \) and \(i\mu B\) terms are equal to zero. Now, we calculate the term \(B\Delta \),

$$\begin{aligned}&{-}\frac{1}{2} \int \mathrm {d}\tau \mathrm {d}\tau ^{\prime }\!\bigg (\! {-}\frac{B\Delta }{\pi ^2} \langle \cos (\sqrt{4\pi }\phi (\tau )) \cos (\sqrt{4\pi }\theta (\tau ^{\prime }))\rangle \nonumber \\&\qquad - \langle \cos (\sqrt{4\pi }\phi (\tau )) \rangle \langle \cos (\sqrt{4\pi }\theta (\tau ^{\prime }))\rangle \bigg ) \nonumber \\&\quad =\frac{B\Delta }{4\pi ^2} \int \mathrm {d}\tau \, \mathrm {d}\tau ^{\prime } [ \cos \sqrt{4\pi }[\phi _s(\tau )+\theta _s(\tau ^{\prime })] \nonumber \\&\qquad \times ( \mathrm {e}^{-2\pi \langle \left( \phi _f(\tau ) + \theta _f(\tau ^{\prime })\right) ^2 \rangle } - \mathrm {e}^{-2\pi [\langle \phi _f^2(\tau ) \rangle + \langle \theta _f^2(\tau ^{\prime }) \rangle ]} ) ]\nonumber \\&\qquad + \frac{B\Delta }{4\pi ^2} \int \mathrm {d}\tau \, \mathrm {d}\tau ^{\prime } [\cos \sqrt{4\pi }[\phi _s(\tau )-\theta _s(\tau ^{\prime })] \nonumber \\&\qquad \times ( \mathrm {e}^{-2\pi \langle \left( \phi _f(\tau ) - \theta _f(\tau ^{\prime })\right) ^2 \rangle } - \mathrm {e}^{-2\pi [\langle \phi _f^2(\tau ) \rangle + \langle \theta _f^2(\tau ^{\prime }) \rangle ]} ) ] .\nonumber \\ \end{aligned}$$
(A.24)

Here the correlation function,

$$\begin{aligned}&\mathrm {e}^{-2\pi \langle \left( \phi _f(\tau ) \pm \theta _f(\tau ^{\prime })\right) ^2 \rangle } \\&\quad = \mathrm {e}^{-2\pi \langle \phi _f^2(\tau ) \rangle + \langle \theta _f^2(\tau ^{\prime })\rangle \pm 2\langle \phi _f(\tau )\theta _f(\tau ^{\prime })\rangle }. \end{aligned}$$

We know that \(\langle \phi _f(\tau )\theta _f(\tau ^{\prime })\rangle =0\). Thus, we have

$$\begin{aligned} \mathrm {e}^{-2\pi \big \langle \left( \phi _f(\tau ) \pm \theta _f(\tau ^{\prime })\right) ^2 \big \rangle } = \mathrm {e}^{-2\pi [\big \langle \phi _f^2(\tau ) \big \rangle + \big \langle \theta _f^2(\tau ^{\prime }) \big \rangle ]}. \end{aligned}$$

These two exponentials cancel each other making the whole term zero. Thus, the first- and second-order cumulant expansions can be rewritten as

$$\begin{aligned}&\left\langle S_{\mathrm {int}}(\phi ,\theta ) \right\rangle _f\nonumber \\&\quad =b^{-K}\int \mathrm {d}\tau \left( \frac{B}{\pi } \cos (\sqrt{4\pi }\phi _s(\tau ))\right) \nonumber \\&\qquad - b^{-{1}/{K}}\int \mathrm {d}\tau \left( \frac{\Delta }{\pi }\cos (\sqrt{4\pi }\theta _s(\tau ))\right) , \end{aligned}$$
(A.25)
$$\begin{aligned}&-\frac{1}{2}(\langle S_{\mathrm {in}}^2\rangle -\left\langle S_{\mathrm {int}}\right\rangle ^2)\nonumber \\&\quad = \frac{B^2}{4\pi ^2}(1- b^{-2K})\int \mathrm {d}\tau (\partial _{\tau }\phi _s)^2 \nonumber \\&\qquad - \frac{B^2}{2\pi ^2}(b^{-4K}- b^{-2K})\int \mathrm {d}\tau \cos [\sqrt{16\pi }\phi _s(\tau )] \nonumber \\&\qquad + \frac{\Delta ^2}{4\pi ^2}(1- b^{-{2}/{K}})\int \mathrm {d}\tau (\partial _{\tau }\theta _s)^2 \nonumber \\&\qquad -\frac{ \Delta \mu }{\pi ^2 v}(1-b^{-{1}/{K}})\int \mathrm {d}\tau \cos [\sqrt{4\pi }\theta _s(\tau )]. \end{aligned}$$
(A.26)

Now we rescale the first- and second-order cumulant expansions by replacing \(\tau =b\tau ^{\prime }\), \(\omega ={\omega ^{\prime }}/{b}\), \(\phi _s(\tau )=\phi ^{\prime }(\tau ^{\prime })\) and \(\phi (\omega )=b\phi ^{\prime }(\omega ^{\prime })\).

$$\begin{aligned}&\left\langle S_{\mathrm {int}}(\phi ,\theta ) \right\rangle _f=b^{2-K}\int \mathrm {d}\tau ^{\prime } \left( \dfrac{B}{\pi } \cos (\sqrt{4\pi }\phi ^{\prime }(\tau ^{\prime }))\right) \nonumber \\&\quad - b^{2-\frac{1}{K}}\int \mathrm {d}\tau ^{\prime } \left( \dfrac{\Delta }{\pi }\cos (\sqrt{4\pi }\theta ^{\prime }(\tau ^{\prime }))\right) , \end{aligned}$$
(A.27)
$$\begin{aligned}&-\frac{1}{2}(\langle S_{\mathrm {int}}^2\rangle -\langle S_{\mathrm {int}}\rangle ^2)\nonumber \\&\quad = \frac{B^2}{4\pi ^2}(b^2- b^{2-2K})\int \mathrm {d}\tau ^{\prime } (\partial _{\tau ^{\prime }}\phi ^{\prime })^2 \nonumber \\&\qquad - \frac{B^2}{2\pi ^2}(b^{2-4K}- b^{2-2K})\int \mathrm {d}\tau ^{\prime } \cos [\sqrt{16\pi }\phi ^{\prime }(\tau ^{\prime })] \nonumber \\&\qquad + \frac{\Delta ^2}{4\pi ^2}(b^2- b^{2-\frac{2}{K}})\int \mathrm {d}\tau ^{\prime } (\partial _{\tau ^{\prime }}\theta ^{\prime })^2 \nonumber \\&\qquad -\frac{ \Delta \mu }{\pi ^2 v}(b^2-b^{2-\frac{1}{K}})\int \mathrm {d}\tau ^{\prime } \cos [\sqrt{4\pi }\theta ^{\prime }(\tau ^{\prime })]. \end{aligned}$$
(A.28)

Comparison of B terms gives

$$\begin{aligned} B^{\prime }=Bb^{2-K}. \end{aligned}$$

We put \(b=\mathrm {e}^{\mathrm {d}l}\) and expand the exponential up to second term, i.e., \(\mathrm {e}^{\mathrm {d}l}=1+\mathrm {d}l\). Then,

$$\begin{aligned} \begin{aligned} B^{\prime }&=B[1+(2-K)\mathrm {d}l],\\&=B+(2-K)B\mathrm {d}l. \end{aligned} \end{aligned}$$

We define \(B^{\prime }-B=\mathrm {d}B\). Thus, we have

$$\begin{aligned} \boxed {\frac{\mathrm {d}B}{\mathrm {d}l}=(2-K)B}. \end{aligned}$$
(A.29)

Comparison of \(\Delta \) terms gives

$$\begin{aligned} \begin{aligned} \Delta ^{\prime }&=\Delta ( b^{2-\frac{1}{K}})-\frac{ \Delta \mu }{\pi v}(b^2-b^{2-\frac{1}{K}})\\&=\Delta ( \mathrm {e}^{(2-\frac{1}{K})\mathrm {d}l})-\frac{ \Delta \mu }{\pi v}(\mathrm {e}^{2\mathrm {d}l}-\mathrm {e}^{(2-\frac{1}{K})\mathrm {d}l})\\&=\Delta + \left( 2-\frac{1}{K}\right) \Delta \mathrm {d}l - \frac{ \Delta \mu }{\pi vK}\mathrm {d}l. \end{aligned} \end{aligned}$$

Thus, the equation in differential form is

$$\begin{aligned} \boxed {\frac{\mathrm {d}\Delta }{\mathrm {d}l}=\left[ 2-\frac{1}{K}\left( 1+\frac{\mu }{v\pi }\right) \right] . } \end{aligned}$$
(A.30)

Comparison of K terms for \(\phi \) field gives

$$\begin{aligned} \begin{aligned} \frac{1}{K^{\prime }}&=\frac{1}{K}\left[ 1+\frac{B^2}{4\pi ^2}(b^2- b^{2-2K}) \right] \\&=\frac{1}{K}\left[ 1+\frac{B^2}{4\pi ^2}(\mathrm {e}^{2dl}- \mathrm {e}^{(2-2K)\mathrm {d}l})\right] \\&=\frac{1}{K} + \frac{B^2}{2\pi ^2}\mathrm {d}l. \end{aligned} \end{aligned}$$

Differential form can obtained as

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}l}\left( \frac{1}{K} \right) = \frac{B^2}{2\pi ^2} . \end{aligned}$$
$$\begin{aligned} \frac{\mathrm {d}K}{\mathrm {d}l}=-\frac{B^2K^2}{2\pi ^2} . \end{aligned}$$
(A.31)

Similarly, for \(\theta \) field,

$$\begin{aligned} \begin{aligned} K^{\prime }&=K+\frac{\Delta ^2K}{4\pi ^2}(b^2- b^{2-{2}/{K}})\\&=K+\frac{\Delta ^2K}{4\pi ^2}(\mathrm{e}^{2dl}- \mathrm {e}^{(2-\frac{2}{K})dl})\\&=K+\frac{\Delta ^2}{2\pi ^2}\mathrm {d}l. \end{aligned} \end{aligned}$$

The differential form is

$$\begin{aligned} \frac{\mathrm {d}K}{\mathrm {d}l}=\frac{\Delta ^2}{2\pi ^2}. \end{aligned}$$
(A.32)

Thus, the complete form of the differential equation for K is

$$\begin{aligned} \boxed {\frac{\mathrm {d}K}{\mathrm {d}l}=\frac{1}{2\pi ^2}(\Delta ^2-B^2K^2)}. \end{aligned}$$
(A.33)

Thus, we obtain the whole set of RG equations,

$$\begin{aligned}&\frac{\mathrm {d}B}{\mathrm {d}l}=(2-K)B.\nonumber \\&\frac{\mathrm {d}\Delta }{\mathrm {d}l}=\left[ 2-\frac{1}{K}\left( 1+\frac{\mu }{v\pi }\right) \right] .\nonumber \\&\frac{\mathrm {d}K}{\mathrm {d}l}=\frac{1}{2\pi ^2}(\Delta ^2-B^2K^2). \end{aligned}$$
(A.34)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R.R., Rahul, S., Narayan, S. et al. Emergence of quantum phases for the interacting helical liquid of topological quantum matter. Pramana - J Phys 95, 94 (2021). https://doi.org/10.1007/s12043-021-02126-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02126-9

Keywords

PACS Nos

Navigation