Skip to main content
Log in

Insights of \(\hbox {XPt}_2\) (\(\hbox {X}=\hbox {Eu}\) and Gd) intermetallic systems: An ab-initio approach

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Rare earth (RE)-based \(\hbox {MgCu}_2\)-type intermetallic compounds are studied by first-principles calculations to search their spintronic applications and thermodynamic stability. We found in our observations that both \(\hbox {EuPt}_2\) and \(\hbox {GdPt}_2\) have half-metallic properties. The band gap arises in spin-down channel which is found to be enhanced when we move from \(\hbox {EuPt}_2\) (0.91 eV) to \(\hbox {GdPt}_2\) (1.04 eV). From magnetic properties we got to know that the magnetic moments of RE and Pt are opposite in direction and total magnetic moment is found to be \(7.01\,\mu _{\mathrm {B}}\) and 4.1 \(\mu _{\mathrm {B}}\) for \(\hbox {EuPt}_2\) and \(\hbox {GdPt}_2\) respectively. Presence of 5\(d^1\) electron in Gd valance shell is the reason for this difference in magnetic moments. No negative frequency has been observed in the phonon dispersion curve of both systems indicating the dynamic stability of \(\hbox {MgCu}_2\)-type structure. Several thermodynamical potentials are also explored in the present study using quasiharmonic approximation. The half-metallicity of dynamically stable \(\hbox {REPt}_2\) systems is appropriate for spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K Reuter, C Stampfl, M V Ganduglia-Pirovano and M Scheffler, Chem. Phys. Lett. 352, 311 (2002)

    Article  ADS  Google Scholar 

  2. M Armbrüster, W Schnelle, U Schwarz and Yu Grin, Inorg. Chem. 46, 6319 (2007)

    Article  Google Scholar 

  3. K Kovnir et al, Surf. Sci. 603, 1784 (2009)

    Article  ADS  Google Scholar 

  4. M Friedrich, A Ormeci, Yu Grin and M Armbrüster, Z. Anorg. Allg. Chem. 636, 1735 (2010)

    Article  Google Scholar 

  5. H Zhang et al, Inorg. Chem. 50, 1250 (2011)

    Article  Google Scholar 

  6. A Ormeci, A Simon and Yu Grin, Angew. Chem. Int. Ed. 49, 8997 (2010)

    Article  Google Scholar 

  7. E Dashjav, Yu Prots, G Kreiner, W Schnelle, F R Wagner and R Kniep, J. Solid State Chem. 181, 3121 (2008)

    Article  ADS  Google Scholar 

  8. S A Villaseca, D Kandaskalov, E Gaudry and M Armbruster, Z. Anorg. Allg. Chem. 640, 753 (2014)

    Article  Google Scholar 

  9. X Nie, S Lu, K Wang, T Chen and C Niu, Mater. Sci. Eng. A 85, 502 (2009)

    Google Scholar 

  10. D J Thoma, K A Nibur and K C Chen, Mater. Sci. Eng. A 329, 408 (2002)

    Article  Google Scholar 

  11. H Xu, X Nie, Y Du, S Lu and K Wang, Philos. Mag. Lett. 8, 465 (2009)

    Article  ADS  Google Scholar 

  12. J Chao, Acta Mater. 55, 1599 (2007)

    Article  Google Scholar 

  13. M K Benabadji and H I Faraoun, MATEC Web of Conferences 5, 04037 (2013)

    Article  Google Scholar 

  14. J B Friauf, J. Am. Chem. Soc. 49, 3107 (1927)

    Article  Google Scholar 

  15. J B Friauf, Phys. Rev. 29, 34 (1927)

    Article  ADS  Google Scholar 

  16. F Laves and H Witte, Metallwirtschaft 14, 645 (1935)

    Google Scholar 

  17. A Yakoubi, O Baraka and B Bouhafs, Res. Phys. 2, 58 (2012)

    Google Scholar 

  18. F Stein, M Palm and G Sauthoff, Intermetallics 12, 713 (2004)

    Article  Google Scholar 

  19. B Mayer, H Anton, E Bott, M Methfessel, J Sticht and J Harris, Intermetallics 11, 23 (2003)

    Article  Google Scholar 

  20. K S Kumar and D B Miracle, Intermetallics 2, 257 (1994)

    Article  Google Scholar 

  21. K S Kumar, L Pang, J A Horton and C T Liu, Intermetallics 11, 677 (2003)

    Article  Google Scholar 

  22. X Tao et al, Comp. Mater. Sci. 44, 392 (2008)

    Article  Google Scholar 

  23. Y Ouyang, X Tao, H Chen, Y Feng, Y Du and Y Liu, Comp. Mater. Sci. 47, 297 (2009)

    Article  Google Scholar 

  24. S Kal, E Stoyanov, J Belieres, T L Groy, R Norrestam and U Haussermann, J. Solid State Chem. 181, 3016 (2008)

    Article  ADS  Google Scholar 

  25. A Zh Tuleushev, V N Volodin and Yu Zh Tuleushev, J. Exp. Theor. Phys. 78, 440 (2003)

    Article  Google Scholar 

  26. Md Z Rahaman and Md A Rahman, Comp. Cond. Mater. 8, 7 (2016)

    Google Scholar 

  27. J B Milstein, Solid state chemistry: A contemporary overview, in: Advances in chemistry series, 291 (American Chemical Society, Washington DC, 1980)

  28. R D James and D Kinderlehrer, Philos. Mag. 68(2), 237 (1993)

  29. R Grossinger, R S Turtelli and N Mehmood, IOP Conf. Ser. Mater. Sci. Eng. 60, 012002 (2014)

    Article  Google Scholar 

  30. P Giannozzi et al, J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  31. P Hohenberg and W Kohn, Phys. Rev. B 136, 864 (1964)

    Article  ADS  Google Scholar 

  32. J P Perdew, K Burke and M Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  33. P E Blochl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  34. H J Monkhorst and J D Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  35. E I Isaev, https://qe-forge.org

  36. C Lee and X Gonze, Phys. Rev. B 51, 8610 (1995)

    Article  ADS  Google Scholar 

  37. A T Petit and P L Dulong, Ann. Chem. Phys. 10, 395 (1981)

    Google Scholar 

  38. P Debye, Ann. Phys. 39, 789 (1912)

    Article  Google Scholar 

Download references

Acknowledgements

The authors highly acknowledge the Department of Science and Technology (DST), New Delhi, India for providing financial assistance in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amreen Bano.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 306 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoori, A.A., Bano, A. Insights of \(\hbox {XPt}_2\) (\(\hbox {X}=\hbox {Eu}\) and Gd) intermetallic systems: An ab-initio approach. Pramana - J Phys 95, 81 (2021). https://doi.org/10.1007/s12043-021-02110-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02110-3

Keywords

PACS Nos

Navigation